| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzadd2d.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
fzadd2d.2 |
|- ( ph -> N e. ZZ ) |
| 3 |
|
fzadd2d.3 |
|- ( ph -> O e. ZZ ) |
| 4 |
|
fzadd2d.4 |
|- ( ph -> P e. ZZ ) |
| 5 |
|
fzadd2d.5 |
|- ( ph -> J e. ( M ... N ) ) |
| 6 |
|
fzadd2d.6 |
|- ( ph -> K e. ( O ... P ) ) |
| 7 |
|
fzadd2d.7 |
|- ( ph -> Q = ( M + O ) ) |
| 8 |
|
fzadd2d.8 |
|- ( ph -> R = ( N + P ) ) |
| 9 |
5 6
|
jca |
|- ( ph -> ( J e. ( M ... N ) /\ K e. ( O ... P ) ) ) |
| 10 |
1 2
|
jca |
|- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
| 11 |
3 4
|
jca |
|- ( ph -> ( O e. ZZ /\ P e. ZZ ) ) |
| 12 |
10 11
|
jca |
|- ( ph -> ( ( M e. ZZ /\ N e. ZZ ) /\ ( O e. ZZ /\ P e. ZZ ) ) ) |
| 13 |
|
fzadd2 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( O e. ZZ /\ P e. ZZ ) ) -> ( ( J e. ( M ... N ) /\ K e. ( O ... P ) ) -> ( J + K ) e. ( ( M + O ) ... ( N + P ) ) ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( ( J e. ( M ... N ) /\ K e. ( O ... P ) ) -> ( J + K ) e. ( ( M + O ) ... ( N + P ) ) ) ) |
| 15 |
9 14
|
mpd |
|- ( ph -> ( J + K ) e. ( ( M + O ) ... ( N + P ) ) ) |
| 16 |
7 8
|
oveq12d |
|- ( ph -> ( Q ... R ) = ( ( M + O ) ... ( N + P ) ) ) |
| 17 |
15 16
|
eleqtrrd |
|- ( ph -> ( J + K ) e. ( Q ... R ) ) |