Metamath Proof Explorer


Theorem fzadd2d

Description: Membership of a sum in a finite interval of integers, a deduction version. (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses fzadd2d.1
|- ( ph -> M e. ZZ )
fzadd2d.2
|- ( ph -> N e. ZZ )
fzadd2d.3
|- ( ph -> O e. ZZ )
fzadd2d.4
|- ( ph -> P e. ZZ )
fzadd2d.5
|- ( ph -> J e. ( M ... N ) )
fzadd2d.6
|- ( ph -> K e. ( O ... P ) )
fzadd2d.7
|- ( ph -> Q = ( M + O ) )
fzadd2d.8
|- ( ph -> R = ( N + P ) )
Assertion fzadd2d
|- ( ph -> ( J + K ) e. ( Q ... R ) )

Proof

Step Hyp Ref Expression
1 fzadd2d.1
 |-  ( ph -> M e. ZZ )
2 fzadd2d.2
 |-  ( ph -> N e. ZZ )
3 fzadd2d.3
 |-  ( ph -> O e. ZZ )
4 fzadd2d.4
 |-  ( ph -> P e. ZZ )
5 fzadd2d.5
 |-  ( ph -> J e. ( M ... N ) )
6 fzadd2d.6
 |-  ( ph -> K e. ( O ... P ) )
7 fzadd2d.7
 |-  ( ph -> Q = ( M + O ) )
8 fzadd2d.8
 |-  ( ph -> R = ( N + P ) )
9 5 6 jca
 |-  ( ph -> ( J e. ( M ... N ) /\ K e. ( O ... P ) ) )
10 1 2 jca
 |-  ( ph -> ( M e. ZZ /\ N e. ZZ ) )
11 3 4 jca
 |-  ( ph -> ( O e. ZZ /\ P e. ZZ ) )
12 10 11 jca
 |-  ( ph -> ( ( M e. ZZ /\ N e. ZZ ) /\ ( O e. ZZ /\ P e. ZZ ) ) )
13 fzadd2
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( O e. ZZ /\ P e. ZZ ) ) -> ( ( J e. ( M ... N ) /\ K e. ( O ... P ) ) -> ( J + K ) e. ( ( M + O ) ... ( N + P ) ) ) )
14 12 13 syl
 |-  ( ph -> ( ( J e. ( M ... N ) /\ K e. ( O ... P ) ) -> ( J + K ) e. ( ( M + O ) ... ( N + P ) ) ) )
15 9 14 mpd
 |-  ( ph -> ( J + K ) e. ( ( M + O ) ... ( N + P ) ) )
16 7 8 oveq12d
 |-  ( ph -> ( Q ... R ) = ( ( M + O ) ... ( N + P ) ) )
17 15 16 eleqtrrd
 |-  ( ph -> ( J + K ) e. ( Q ... R ) )