Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zltlem1d.1 | |- ( ph -> M e. ZZ ) |
|
| zltlem1d.2 | |- ( ph -> N e. ZZ ) |
||
| Assertion | zltlem1d | |- ( ph -> ( M < N <-> M <_ ( N - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zltlem1d.1 | |- ( ph -> M e. ZZ ) |
|
| 2 | zltlem1d.2 | |- ( ph -> N e. ZZ ) |
|
| 3 | zltlem1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> M <_ ( N - 1 ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( M < N <-> M <_ ( N - 1 ) ) ) |