Metamath Proof Explorer


Theorem zltlem1d

Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses zltlem1d.1
|- ( ph -> M e. ZZ )
zltlem1d.2
|- ( ph -> N e. ZZ )
Assertion zltlem1d
|- ( ph -> ( M < N <-> M <_ ( N - 1 ) ) )

Proof

Step Hyp Ref Expression
1 zltlem1d.1
 |-  ( ph -> M e. ZZ )
2 zltlem1d.2
 |-  ( ph -> N e. ZZ )
3 zltlem1
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> M <_ ( N - 1 ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( M < N <-> M <_ ( N - 1 ) ) )