| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							peano2zm | 
							 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )  | 
						
						
							| 2 | 
							
								
							 | 
							zleltp1 | 
							 |-  ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( M <_ ( N - 1 ) <-> M < ( ( N - 1 ) + 1 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan2 | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ ( N - 1 ) <-> M < ( ( N - 1 ) + 1 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							zcn | 
							 |-  ( N e. ZZ -> N e. CC )  | 
						
						
							| 5 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 6 | 
							
								
							 | 
							npcan | 
							 |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							sylancl | 
							 |-  ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N - 1 ) + 1 ) = N )  | 
						
						
							| 9 | 
							
								8
							 | 
							breq2d | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < ( ( N - 1 ) + 1 ) <-> M < N ) )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							bitr2d | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> M <_ ( N - 1 ) ) )  |