Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zltp1led.1 | |- ( ph -> M e. ZZ ) |
|
zltp1led.2 | |- ( ph -> N e. ZZ ) |
||
Assertion | zltp1led | |- ( ph -> ( M < N <-> ( M + 1 ) <_ N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltp1led.1 | |- ( ph -> M e. ZZ ) |
|
2 | zltp1led.2 | |- ( ph -> N e. ZZ ) |
|
3 | zltp1le | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( M < N <-> ( M + 1 ) <_ N ) ) |