Metamath Proof Explorer


Theorem zltp1led

Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses zltp1led.1
|- ( ph -> M e. ZZ )
zltp1led.2
|- ( ph -> N e. ZZ )
Assertion zltp1led
|- ( ph -> ( M < N <-> ( M + 1 ) <_ N ) )

Proof

Step Hyp Ref Expression
1 zltp1led.1
 |-  ( ph -> M e. ZZ )
2 zltp1led.2
 |-  ( ph -> N e. ZZ )
3 zltp1le
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( M < N <-> ( M + 1 ) <_ N ) )