Metamath Proof Explorer
Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)
|
|
Ref |
Expression |
|
Hypotheses |
zltp1led.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
|
zltp1led.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
Assertion |
zltp1led |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zltp1led.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
zltp1led.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
zltp1le |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |