Metamath Proof Explorer


Theorem zltp1led

Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses zltp1led.1 ( 𝜑𝑀 ∈ ℤ )
zltp1led.2 ( 𝜑𝑁 ∈ ℤ )
Assertion zltp1led ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 zltp1led.1 ( 𝜑𝑀 ∈ ℤ )
2 zltp1led.2 ( 𝜑𝑁 ∈ ℤ )
3 zltp1le ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) )