Metamath Proof Explorer


Theorem fzne2d

Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses fzne2d.1 ( 𝜑𝐾 ∈ ( 𝑀 ... 𝑁 ) )
fzne2d.2 ( 𝜑𝐾𝑁 )
Assertion fzne2d ( 𝜑𝐾 < 𝑁 )

Proof

Step Hyp Ref Expression
1 fzne2d.1 ( 𝜑𝐾 ∈ ( 𝑀 ... 𝑁 ) )
2 fzne2d.2 ( 𝜑𝐾𝑁 )
3 2 necomd ( 𝜑𝑁𝐾 )
4 elfz2 ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀𝐾𝐾𝑁 ) ) )
5 1 4 sylib ( 𝜑 → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀𝐾𝐾𝑁 ) ) )
6 5 simpld ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) )
7 6 simp3d ( 𝜑𝐾 ∈ ℤ )
8 7 zred ( 𝜑𝐾 ∈ ℝ )
9 6 simp2d ( 𝜑𝑁 ∈ ℤ )
10 9 zred ( 𝜑𝑁 ∈ ℝ )
11 5 simprrd ( 𝜑𝐾𝑁 )
12 8 10 11 leltned ( 𝜑 → ( 𝐾 < 𝑁𝑁𝐾 ) )
13 3 12 mpbird ( 𝜑𝐾 < 𝑁 )