Metamath Proof Explorer


Theorem fzne2d

Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses fzne2d.1
|- ( ph -> K e. ( M ... N ) )
fzne2d.2
|- ( ph -> K =/= N )
Assertion fzne2d
|- ( ph -> K < N )

Proof

Step Hyp Ref Expression
1 fzne2d.1
 |-  ( ph -> K e. ( M ... N ) )
2 fzne2d.2
 |-  ( ph -> K =/= N )
3 2 necomd
 |-  ( ph -> N =/= K )
4 elfz2
 |-  ( K e. ( M ... N ) <-> ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M <_ K /\ K <_ N ) ) )
5 1 4 sylib
 |-  ( ph -> ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M <_ K /\ K <_ N ) ) )
6 5 simpld
 |-  ( ph -> ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) )
7 6 simp3d
 |-  ( ph -> K e. ZZ )
8 7 zred
 |-  ( ph -> K e. RR )
9 6 simp2d
 |-  ( ph -> N e. ZZ )
10 9 zred
 |-  ( ph -> N e. RR )
11 5 simprrd
 |-  ( ph -> K <_ N )
12 8 10 11 leltned
 |-  ( ph -> ( K < N <-> N =/= K ) )
13 3 12 mpbird
 |-  ( ph -> K < N )