Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fzne2d.1 | |- ( ph -> K e. ( M ... N ) ) |
|
fzne2d.2 | |- ( ph -> K =/= N ) |
||
Assertion | fzne2d | |- ( ph -> K < N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzne2d.1 | |- ( ph -> K e. ( M ... N ) ) |
|
2 | fzne2d.2 | |- ( ph -> K =/= N ) |
|
3 | 2 | necomd | |- ( ph -> N =/= K ) |
4 | elfz2 | |- ( K e. ( M ... N ) <-> ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M <_ K /\ K <_ N ) ) ) |
|
5 | 1 4 | sylib | |- ( ph -> ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M <_ K /\ K <_ N ) ) ) |
6 | 5 | simpld | |- ( ph -> ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) ) |
7 | 6 | simp3d | |- ( ph -> K e. ZZ ) |
8 | 7 | zred | |- ( ph -> K e. RR ) |
9 | 6 | simp2d | |- ( ph -> N e. ZZ ) |
10 | 9 | zred | |- ( ph -> N e. RR ) |
11 | 5 | simprrd | |- ( ph -> K <_ N ) |
12 | 8 10 11 | leltned | |- ( ph -> ( K < N <-> N =/= K ) ) |
13 | 3 12 | mpbird | |- ( ph -> K < N ) |