Metamath Proof Explorer
		
		
		
		Description:  'Less than or equal to' implies 'less than' is not 'equals'.
         (Contributed by Mario Carneiro, 27-May-2016)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						ltd.1 | 
						⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
					
					
						 | 
						 | 
						ltd.2 | 
						⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
					
					
						 | 
						 | 
						leltned.3 | 
						⊢ ( 𝜑  →  𝐴  ≤  𝐵 )  | 
					
				
					 | 
					Assertion | 
					leltned | 
					⊢  ( 𝜑  →  ( 𝐴  <  𝐵  ↔  𝐵  ≠  𝐴 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltd.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							ltd.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							leltned.3 | 
							⊢ ( 𝜑  →  𝐴  ≤  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							leltne | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  <  𝐵  ↔  𝐵  ≠  𝐴 ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  𝐵  ≠  𝐴 ) )  |