Metamath Proof Explorer


Theorem leltned

Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
leltned.3 φ A B
Assertion leltned φ A < B B A

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 leltned.3 φ A B
4 leltne A B A B A < B B A
5 1 2 3 4 syl3anc φ A < B B A