Metamath Proof Explorer
		
		
		
		Description:  'Less than or equal to' and 'not equals' implies 'less than'.
         (Contributed by Glauco Siliprandi, 11-Dec-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ltd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | ltd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | leltned.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
					
						|  |  | leneltd.4 | ⊢ ( 𝜑  →  𝐵  ≠  𝐴 ) | 
				
					|  | Assertion | leneltd | ⊢  ( 𝜑  →  𝐴  <  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ltd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | leltned.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | leneltd.4 | ⊢ ( 𝜑  →  𝐵  ≠  𝐴 ) | 
						
							| 5 | 1 2 3 | leltned | ⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  𝐵  ≠  𝐴 ) ) | 
						
							| 6 | 4 5 | mpbird | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) |