| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lttri3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  =  𝐵  ↔  ( ¬  𝐴  <  𝐵  ∧  ¬  𝐵  <  𝐴 ) ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( ¬  𝐴  <  𝐵  ∧  ¬  𝐵  <  𝐴 )  →  ¬  𝐴  <  𝐵 ) | 
						
							| 3 | 1 2 | biimtrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  =  𝐵  →  ¬  𝐴  <  𝐵 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  =  𝐵  →  ¬  𝐴  <  𝐵 ) ) | 
						
							| 5 |  | leloe | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  <  𝐵  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 6 | 5 | biimpa | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  <  𝐵  ∨  𝐴  =  𝐵 ) ) | 
						
							| 7 | 6 | ord | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( ¬  𝐴  <  𝐵  →  𝐴  =  𝐵 ) ) | 
						
							| 8 | 4 7 | impbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  =  𝐵  ↔  ¬  𝐴  <  𝐵 ) ) | 
						
							| 9 | 8 | necon2abid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  <  𝐵  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 10 |  | necom | ⊢ ( 𝐵  ≠  𝐴  ↔  𝐴  ≠  𝐵 ) | 
						
							| 11 | 9 10 | bitr4di | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  <  𝐵  ↔  𝐵  ≠  𝐴 ) ) | 
						
							| 12 | 11 | 3impa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  <  𝐵  ↔  𝐵  ≠  𝐴 ) ) |