| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lttri3 |  |-  ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) | 
						
							| 2 |  | simpl |  |-  ( ( -. A < B /\ -. B < A ) -> -. A < B ) | 
						
							| 3 | 1 2 | biimtrdi |  |-  ( ( A e. RR /\ B e. RR ) -> ( A = B -> -. A < B ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A = B -> -. A < B ) ) | 
						
							| 5 |  | leloe |  |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B \/ A = B ) ) | 
						
							| 7 | 6 | ord |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( -. A < B -> A = B ) ) | 
						
							| 8 | 4 7 | impbid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A = B <-> -. A < B ) ) | 
						
							| 9 | 8 | necon2abid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B <-> A =/= B ) ) | 
						
							| 10 |  | necom |  |-  ( B =/= A <-> A =/= B ) | 
						
							| 11 | 9 10 | bitr4di |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B <-> B =/= A ) ) | 
						
							| 12 | 11 | 3impa |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |