Step |
Hyp |
Ref |
Expression |
1 |
|
lttri3 |
|- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
2 |
|
simpl |
|- ( ( -. A < B /\ -. B < A ) -> -. A < B ) |
3 |
1 2
|
syl6bi |
|- ( ( A e. RR /\ B e. RR ) -> ( A = B -> -. A < B ) ) |
4 |
3
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A = B -> -. A < B ) ) |
5 |
|
leloe |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
6 |
5
|
biimpa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B \/ A = B ) ) |
7 |
6
|
ord |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( -. A < B -> A = B ) ) |
8 |
4 7
|
impbid |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A = B <-> -. A < B ) ) |
9 |
8
|
necon2abid |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B <-> A =/= B ) ) |
10 |
|
necom |
|- ( B =/= A <-> A =/= B ) |
11 |
9 10
|
bitr4di |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |
12 |
11
|
3impa |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |