Metamath Proof Explorer


Theorem zltp1led

Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses zltp1led.1 φM
zltp1led.2 φN
Assertion zltp1led φM<NM+1N

Proof

Step Hyp Ref Expression
1 zltp1led.1 φM
2 zltp1led.2 φN
3 zltp1le MNM<NM+1N
4 1 2 3 syl2anc φM<NM+1N