Metamath Proof Explorer


Theorem zltlem1d

Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses zltlem1d.1 φ M
zltlem1d.2 φ N
Assertion zltlem1d φ M < N M N 1

Proof

Step Hyp Ref Expression
1 zltlem1d.1 φ M
2 zltlem1d.2 φ N
3 zltlem1 M N M < N M N 1
4 1 2 3 syl2anc φ M < N M N 1