Metamath Proof Explorer


Theorem zltlem1d

Description: Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses zltlem1d.1 φM
zltlem1d.2 φN
Assertion zltlem1d φM<NMN1

Proof

Step Hyp Ref Expression
1 zltlem1d.1 φM
2 zltlem1d.2 φN
3 zltlem1 MNM<NMN1
4 1 2 3 syl2anc φM<NMN1