Step |
Hyp |
Ref |
Expression |
1 |
|
fzadd2d.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
fzadd2d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
fzadd2d.3 |
⊢ ( 𝜑 → 𝑂 ∈ ℤ ) |
4 |
|
fzadd2d.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
5 |
|
fzadd2d.5 |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) |
6 |
|
fzadd2d.6 |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑂 ... 𝑃 ) ) |
7 |
|
fzadd2d.7 |
⊢ ( 𝜑 → 𝑄 = ( 𝑀 + 𝑂 ) ) |
8 |
|
fzadd2d.8 |
⊢ ( 𝜑 → 𝑅 = ( 𝑁 + 𝑃 ) ) |
9 |
5 6
|
jca |
⊢ ( 𝜑 → ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐾 ∈ ( 𝑂 ... 𝑃 ) ) ) |
10 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
11 |
3 4
|
jca |
⊢ ( 𝜑 → ( 𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) |
12 |
10 11
|
jca |
⊢ ( 𝜑 → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) ) |
13 |
|
fzadd2 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) → ( ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐾 ∈ ( 𝑂 ... 𝑃 ) ) → ( 𝐽 + 𝐾 ) ∈ ( ( 𝑀 + 𝑂 ) ... ( 𝑁 + 𝑃 ) ) ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐾 ∈ ( 𝑂 ... 𝑃 ) ) → ( 𝐽 + 𝐾 ) ∈ ( ( 𝑀 + 𝑂 ) ... ( 𝑁 + 𝑃 ) ) ) ) |
15 |
9 14
|
mpd |
⊢ ( 𝜑 → ( 𝐽 + 𝐾 ) ∈ ( ( 𝑀 + 𝑂 ) ... ( 𝑁 + 𝑃 ) ) ) |
16 |
7 8
|
oveq12d |
⊢ ( 𝜑 → ( 𝑄 ... 𝑅 ) = ( ( 𝑀 + 𝑂 ) ... ( 𝑁 + 𝑃 ) ) ) |
17 |
15 16
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐽 + 𝐾 ) ∈ ( 𝑄 ... 𝑅 ) ) |