Metamath Proof Explorer


Theorem uzindd

Description: Induction on the upper integers that start at M . The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024)

Ref Expression
Hypotheses uzindd.1 j = M ψ χ
uzindd.2 j = k ψ θ
uzindd.3 j = k + 1 ψ τ
uzindd.4 j = N ψ η
uzindd.5 φ χ
uzindd.6 φ θ k M k τ
uzindd.7 φ M
uzindd.8 φ N
uzindd.9 φ M N
Assertion uzindd φ η

Proof

Step Hyp Ref Expression
1 uzindd.1 j = M ψ χ
2 uzindd.2 j = k ψ θ
3 uzindd.3 j = k + 1 ψ τ
4 uzindd.4 j = N ψ η
5 uzindd.5 φ χ
6 uzindd.6 φ θ k M k τ
7 uzindd.7 φ M
8 uzindd.8 φ N
9 uzindd.9 φ M N
10 7 8 9 3jca φ M N M N
11 1 imbi2d j = M φ ψ φ χ
12 2 imbi2d j = k φ ψ φ θ
13 3 imbi2d j = k + 1 φ ψ φ τ
14 4 imbi2d j = N φ ψ φ η
15 5 adantr φ M χ
16 15 expcom M φ χ
17 3anass M k M k M k M k
18 ancom M k M k k M k M
19 17 18 bitri M k M k k M k M
20 6 ad4ant123 φ θ k M k M τ
21 20 anasss φ θ k M k M τ
22 19 21 sylan2b φ θ M k M k τ
23 22 3impa φ θ M k M k τ
24 23 3com23 φ M k M k θ τ
25 24 3expia φ M k M k θ τ
26 25 expcom M k M k φ θ τ
27 26 a2d M k M k φ θ φ τ
28 11 12 13 14 16 27 uzind M N M N φ η
29 10 28 mpcom φ η