Metamath Proof Explorer


Theorem uzindd

Description: Induction on the upper integers that start at M . The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024)

Ref Expression
Hypotheses uzindd.1 j=Mψχ
uzindd.2 j=kψθ
uzindd.3 j=k+1ψτ
uzindd.4 j=Nψη
uzindd.5 φχ
uzindd.6 φθkMkτ
uzindd.7 φM
uzindd.8 φN
uzindd.9 φMN
Assertion uzindd φη

Proof

Step Hyp Ref Expression
1 uzindd.1 j=Mψχ
2 uzindd.2 j=kψθ
3 uzindd.3 j=k+1ψτ
4 uzindd.4 j=Nψη
5 uzindd.5 φχ
6 uzindd.6 φθkMkτ
7 uzindd.7 φM
8 uzindd.8 φN
9 uzindd.9 φMN
10 7 8 9 3jca φMNMN
11 1 imbi2d j=Mφψφχ
12 2 imbi2d j=kφψφθ
13 3 imbi2d j=k+1φψφτ
14 4 imbi2d j=Nφψφη
15 5 adantr φMχ
16 15 expcom Mφχ
17 3anass MkMkMkMk
18 ancom MkMkkMkM
19 17 18 bitri MkMkkMkM
20 6 ad4ant123 φθkMkMτ
21 20 anasss φθkMkMτ
22 19 21 sylan2b φθMkMkτ
23 22 3impa φθMkMkτ
24 23 3com23 φMkMkθτ
25 24 3expia φMkMkθτ
26 25 expcom MkMkφθτ
27 26 a2d MkMkφθφτ
28 11 12 13 14 16 27 uzind MNMNφη
29 10 28 mpcom φη