Description: Induction on the upper integers that start at M . The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uzindd.1 | |
|
uzindd.2 | |
||
uzindd.3 | |
||
uzindd.4 | |
||
uzindd.5 | |
||
uzindd.6 | |
||
uzindd.7 | |
||
uzindd.8 | |
||
uzindd.9 | |
||
Assertion | uzindd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzindd.1 | |
|
2 | uzindd.2 | |
|
3 | uzindd.3 | |
|
4 | uzindd.4 | |
|
5 | uzindd.5 | |
|
6 | uzindd.6 | |
|
7 | uzindd.7 | |
|
8 | uzindd.8 | |
|
9 | uzindd.9 | |
|
10 | 7 8 9 | 3jca | |
11 | 1 | imbi2d | |
12 | 2 | imbi2d | |
13 | 3 | imbi2d | |
14 | 4 | imbi2d | |
15 | 5 | adantr | |
16 | 15 | expcom | |
17 | 3anass | |
|
18 | ancom | |
|
19 | 17 18 | bitri | |
20 | 6 | ad4ant123 | |
21 | 20 | anasss | |
22 | 19 21 | sylan2b | |
23 | 22 | 3impa | |
24 | 23 | 3com23 | |
25 | 24 | 3expia | |
26 | 25 | expcom | |
27 | 26 | a2d | |
28 | 11 12 13 14 16 27 | uzind | |
29 | 10 28 | mpcom | |