| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzind.1 | ⊢ ( 𝑥  =  𝑀  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | fzind.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | fzind.3 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | fzind.4 | ⊢ ( 𝑥  =  𝐾  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | fzind.5 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  𝜓 ) | 
						
							| 6 |  | fzind.6 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦  ∧  𝑦  <  𝑁 ) )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑥  =  𝑀  →  ( 𝑥  ≤  𝑁  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 8 | 7 | anbi2d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝑁  ∈  ℤ  ∧  𝑥  ≤  𝑁 )  ↔  ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) ) ) | 
						
							| 9 | 8 1 | imbi12d | ⊢ ( 𝑥  =  𝑀  →  ( ( ( 𝑁  ∈  ℤ  ∧  𝑥  ≤  𝑁 )  →  𝜑 )  ↔  ( ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  𝜓 ) ) ) | 
						
							| 10 |  | breq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≤  𝑁  ↔  𝑦  ≤  𝑁 ) ) | 
						
							| 11 | 10 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑁  ∈  ℤ  ∧  𝑥  ≤  𝑁 )  ↔  ( 𝑁  ∈  ℤ  ∧  𝑦  ≤  𝑁 ) ) ) | 
						
							| 12 | 11 2 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑁  ∈  ℤ  ∧  𝑥  ≤  𝑁 )  →  𝜑 )  ↔  ( ( 𝑁  ∈  ℤ  ∧  𝑦  ≤  𝑁 )  →  𝜒 ) ) ) | 
						
							| 13 |  | breq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥  ≤  𝑁  ↔  ( 𝑦  +  1 )  ≤  𝑁 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑁  ∈  ℤ  ∧  𝑥  ≤  𝑁 )  ↔  ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 ) ) ) | 
						
							| 15 | 14 3 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( ( 𝑁  ∈  ℤ  ∧  𝑥  ≤  𝑁 )  →  𝜑 )  ↔  ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  𝜃 ) ) ) | 
						
							| 16 |  | breq1 | ⊢ ( 𝑥  =  𝐾  →  ( 𝑥  ≤  𝑁  ↔  𝐾  ≤  𝑁 ) ) | 
						
							| 17 | 16 | anbi2d | ⊢ ( 𝑥  =  𝐾  →  ( ( 𝑁  ∈  ℤ  ∧  𝑥  ≤  𝑁 )  ↔  ( 𝑁  ∈  ℤ  ∧  𝐾  ≤  𝑁 ) ) ) | 
						
							| 18 | 17 4 | imbi12d | ⊢ ( 𝑥  =  𝐾  →  ( ( ( 𝑁  ∈  ℤ  ∧  𝑥  ≤  𝑁 )  →  𝜑 )  ↔  ( ( 𝑁  ∈  ℤ  ∧  𝐾  ≤  𝑁 )  →  𝜏 ) ) ) | 
						
							| 19 | 5 | 3expib | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  𝜓 ) ) | 
						
							| 20 |  | zre | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℝ ) | 
						
							| 21 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 22 |  | p1le | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  𝑦  ≤  𝑁 ) | 
						
							| 23 | 22 | 3expia | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 𝑦  +  1 )  ≤  𝑁  →  𝑦  ≤  𝑁 ) ) | 
						
							| 24 | 20 21 23 | syl2an | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑦  +  1 )  ≤  𝑁  →  𝑦  ≤  𝑁 ) ) | 
						
							| 25 | 24 | imdistanda | ⊢ ( 𝑦  ∈  ℤ  →  ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  ( 𝑁  ∈  ℤ  ∧  𝑦  ≤  𝑁 ) ) ) | 
						
							| 26 | 25 | imim1d | ⊢ ( 𝑦  ∈  ℤ  →  ( ( ( 𝑁  ∈  ℤ  ∧  𝑦  ≤  𝑁 )  →  𝜒 )  →  ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  𝜒 ) ) ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  →  ( ( ( 𝑁  ∈  ℤ  ∧  𝑦  ≤  𝑁 )  →  𝜒 )  →  ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  𝜒 ) ) ) | 
						
							| 28 |  | zltp1le | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑦  <  𝑁  ↔  ( 𝑦  +  1 )  ≤  𝑁 ) ) | 
						
							| 29 | 28 | adantlr | ⊢ ( ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑦  <  𝑁  ↔  ( 𝑦  +  1 )  ≤  𝑁 ) ) | 
						
							| 30 | 29 | expcom | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  →  ( 𝑦  <  𝑁  ↔  ( 𝑦  +  1 )  ≤  𝑁 ) ) ) | 
						
							| 31 | 30 | pm5.32d | ⊢ ( 𝑁  ∈  ℤ  →  ( ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  𝑦  <  𝑁 )  ↔  ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  ( 𝑦  +  1 )  ≤  𝑁 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  𝑦  <  𝑁 )  ↔  ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  ( 𝑦  +  1 )  ≤  𝑁 ) ) ) | 
						
							| 33 | 6 | expcom | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦  ∧  𝑦  <  𝑁 )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 34 | 33 | 3expa | ⊢ ( ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  𝑦  <  𝑁 )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 35 | 34 | com12 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  𝑦  <  𝑁 )  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 36 | 32 35 | sylbird | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  ( 𝜒  →  𝜃 ) ) ) ) | 
						
							| 38 | 37 | com23 | ⊢ ( 𝑀  ∈  ℤ  →  ( ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  ( 𝑁  ∈  ℤ  →  ( 𝜒  →  𝜃 ) ) ) ) | 
						
							| 39 | 38 | expd | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  →  ( ( 𝑦  +  1 )  ≤  𝑁  →  ( 𝑁  ∈  ℤ  →  ( 𝜒  →  𝜃 ) ) ) ) ) | 
						
							| 40 | 39 | 3impib | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  →  ( ( 𝑦  +  1 )  ≤  𝑁  →  ( 𝑁  ∈  ℤ  →  ( 𝜒  →  𝜃 ) ) ) ) | 
						
							| 41 | 40 | impcomd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  →  ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 42 | 41 | a2d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  →  ( ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  𝜒 )  →  ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  𝜃 ) ) ) | 
						
							| 43 | 27 42 | syld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  𝑀  ≤  𝑦 )  →  ( ( ( 𝑁  ∈  ℤ  ∧  𝑦  ≤  𝑁 )  →  𝜒 )  →  ( ( 𝑁  ∈  ℤ  ∧  ( 𝑦  +  1 )  ≤  𝑁 )  →  𝜃 ) ) ) | 
						
							| 44 | 9 12 15 18 19 43 | uzind | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾 )  →  ( ( 𝑁  ∈  ℤ  ∧  𝐾  ≤  𝑁 )  →  𝜏 ) ) | 
						
							| 45 | 44 | expcomd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾 )  →  ( 𝐾  ≤  𝑁  →  ( 𝑁  ∈  ℤ  →  𝜏 ) ) ) | 
						
							| 46 | 45 | 3expb | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾 ) )  →  ( 𝐾  ≤  𝑁  →  ( 𝑁  ∈  ℤ  →  𝜏 ) ) ) | 
						
							| 47 | 46 | expcom | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  ∈  ℤ  →  ( 𝐾  ≤  𝑁  →  ( 𝑁  ∈  ℤ  →  𝜏 ) ) ) ) | 
						
							| 48 | 47 | com23 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾 )  →  ( 𝐾  ≤  𝑁  →  ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  𝜏 ) ) ) ) | 
						
							| 49 | 48 | 3impia | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 )  →  ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  𝜏 ) ) ) | 
						
							| 50 | 49 | impd | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝜏 ) ) | 
						
							| 51 | 50 | impcom | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) )  →  𝜏 ) |