Metamath Proof Explorer


Theorem fzind

Description: Induction on the integers from M to N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Hypotheses fzind.1 x=Mφψ
fzind.2 x=yφχ
fzind.3 x=y+1φθ
fzind.4 x=Kφτ
fzind.5 MNMNψ
fzind.6 MNyMyy<Nχθ
Assertion fzind MNKMKKNτ

Proof

Step Hyp Ref Expression
1 fzind.1 x=Mφψ
2 fzind.2 x=yφχ
3 fzind.3 x=y+1φθ
4 fzind.4 x=Kφτ
5 fzind.5 MNMNψ
6 fzind.6 MNyMyy<Nχθ
7 breq1 x=MxNMN
8 7 anbi2d x=MNxNNMN
9 8 1 imbi12d x=MNxNφNMNψ
10 breq1 x=yxNyN
11 10 anbi2d x=yNxNNyN
12 11 2 imbi12d x=yNxNφNyNχ
13 breq1 x=y+1xNy+1N
14 13 anbi2d x=y+1NxNNy+1N
15 14 3 imbi12d x=y+1NxNφNy+1Nθ
16 breq1 x=KxNKN
17 16 anbi2d x=KNxNNKN
18 17 4 imbi12d x=KNxNφNKNτ
19 5 3expib MNMNψ
20 zre yy
21 zre NN
22 p1le yNy+1NyN
23 22 3expia yNy+1NyN
24 20 21 23 syl2an yNy+1NyN
25 24 imdistanda yNy+1NNyN
26 25 imim1d yNyNχNy+1Nχ
27 26 3ad2ant2 MyMyNyNχNy+1Nχ
28 zltp1le yNy<Ny+1N
29 28 adantlr yMyNy<Ny+1N
30 29 expcom NyMyy<Ny+1N
31 30 pm5.32d NyMyy<NyMyy+1N
32 31 adantl MNyMyy<NyMyy+1N
33 6 expcom yMyy<NMNχθ
34 33 3expa yMyy<NMNχθ
35 34 com12 MNyMyy<Nχθ
36 32 35 sylbird MNyMyy+1Nχθ
37 36 ex MNyMyy+1Nχθ
38 37 com23 MyMyy+1NNχθ
39 38 expd MyMyy+1NNχθ
40 39 3impib MyMyy+1NNχθ
41 40 impcomd MyMyNy+1Nχθ
42 41 a2d MyMyNy+1NχNy+1Nθ
43 27 42 syld MyMyNyNχNy+1Nθ
44 9 12 15 18 19 43 uzind MKMKNKNτ
45 44 expcomd MKMKKNNτ
46 45 3expb MKMKKNNτ
47 46 expcom KMKMKNNτ
48 47 com23 KMKKNMNτ
49 48 3impia KMKKNMNτ
50 49 impd KMKKNMNτ
51 50 impcom MNKMKKNτ