Description: Induction on the integers from M to N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fzind.1 | |
|
fzind.2 | |
||
fzind.3 | |
||
fzind.4 | |
||
fzind.5 | |
||
fzind.6 | |
||
Assertion | fzind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzind.1 | |
|
2 | fzind.2 | |
|
3 | fzind.3 | |
|
4 | fzind.4 | |
|
5 | fzind.5 | |
|
6 | fzind.6 | |
|
7 | breq1 | |
|
8 | 7 | anbi2d | |
9 | 8 1 | imbi12d | |
10 | breq1 | |
|
11 | 10 | anbi2d | |
12 | 11 2 | imbi12d | |
13 | breq1 | |
|
14 | 13 | anbi2d | |
15 | 14 3 | imbi12d | |
16 | breq1 | |
|
17 | 16 | anbi2d | |
18 | 17 4 | imbi12d | |
19 | 5 | 3expib | |
20 | zre | |
|
21 | zre | |
|
22 | p1le | |
|
23 | 22 | 3expia | |
24 | 20 21 23 | syl2an | |
25 | 24 | imdistanda | |
26 | 25 | imim1d | |
27 | 26 | 3ad2ant2 | |
28 | zltp1le | |
|
29 | 28 | adantlr | |
30 | 29 | expcom | |
31 | 30 | pm5.32d | |
32 | 31 | adantl | |
33 | 6 | expcom | |
34 | 33 | 3expa | |
35 | 34 | com12 | |
36 | 32 35 | sylbird | |
37 | 36 | ex | |
38 | 37 | com23 | |
39 | 38 | expd | |
40 | 39 | 3impib | |
41 | 40 | impcomd | |
42 | 41 | a2d | |
43 | 27 42 | syld | |
44 | 9 12 15 18 19 43 | uzind | |
45 | 44 | expcomd | |
46 | 45 | 3expb | |
47 | 46 | expcom | |
48 | 47 | com23 | |
49 | 48 | 3impia | |
50 | 49 | impd | |
51 | 50 | impcom | |