Step |
Hyp |
Ref |
Expression |
1 |
|
fnn0ind.1 |
|
2 |
|
fnn0ind.2 |
|
3 |
|
fnn0ind.3 |
|
4 |
|
fnn0ind.4 |
|
5 |
|
fnn0ind.5 |
|
6 |
|
fnn0ind.6 |
|
7 |
|
elnn0z |
|
8 |
|
nn0z |
|
9 |
|
0z |
|
10 |
|
elnn0z |
|
11 |
10 5
|
sylbir |
|
12 |
11
|
3adant1 |
|
13 |
|
0re |
|
14 |
|
zre |
|
15 |
|
zre |
|
16 |
|
lelttr |
|
17 |
|
ltle |
|
18 |
17
|
3adant2 |
|
19 |
16 18
|
syld |
|
20 |
13 14 15 19
|
mp3an3an |
|
21 |
20
|
ex |
|
22 |
21
|
com23 |
|
23 |
22
|
3impib |
|
24 |
23
|
impcom |
|
25 |
|
elnn0z |
|
26 |
25
|
anbi1i |
|
27 |
6
|
3expb |
|
28 |
10 26 27
|
syl2anbr |
|
29 |
28
|
expcom |
|
30 |
29
|
3impa |
|
31 |
30
|
expd |
|
32 |
31
|
impcom |
|
33 |
24 32
|
mpd |
|
34 |
33
|
adantll |
|
35 |
1 2 3 4 12 34
|
fzind |
|
36 |
9 35
|
mpanl1 |
|
37 |
36
|
expcom |
|
38 |
8 37
|
syl5 |
|
39 |
38
|
3expa |
|
40 |
7 39
|
sylanb |
|
41 |
40
|
impcom |
|
42 |
41
|
3impb |
|