Step |
Hyp |
Ref |
Expression |
1 |
|
fnn0ind.1 |
⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
fnn0ind.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
fnn0ind.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
fnn0ind.4 |
⊢ ( 𝑥 = 𝐾 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
fnn0ind.5 |
⊢ ( 𝑁 ∈ ℕ0 → 𝜓 ) |
6 |
|
fnn0ind.6 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) → ( 𝜒 → 𝜃 ) ) |
7 |
|
elnn0z |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ) |
8 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
9 |
|
0z |
⊢ 0 ∈ ℤ |
10 |
|
elnn0z |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
11 |
10 5
|
sylbir |
⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → 𝜓 ) |
12 |
11
|
3adant1 |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → 𝜓 ) |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
15 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
16 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 < 𝑁 ) ) |
17 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
18 |
17
|
3adant2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
19 |
16 18
|
syld |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) |
20 |
13 14 15 19
|
mp3an3an |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) |
21 |
20
|
ex |
⊢ ( 𝑦 ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) ) |
22 |
21
|
com23 |
⊢ ( 𝑦 ∈ ℤ → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → 0 ≤ 𝑁 ) ) ) |
23 |
22
|
3impib |
⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → 0 ≤ 𝑁 ) ) |
24 |
23
|
impcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → 0 ≤ 𝑁 ) |
25 |
|
elnn0z |
⊢ ( 𝑦 ∈ ℕ0 ↔ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) |
26 |
25
|
anbi1i |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) ↔ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) ) |
27 |
6
|
3expb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
28 |
10 26 27
|
syl2anbr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ∧ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
29 |
28
|
expcom |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) → ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
30 |
29
|
3impa |
⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
31 |
30
|
expd |
⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → ( 0 ≤ 𝑁 → ( 𝜒 → 𝜃 ) ) ) ) |
32 |
31
|
impcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 0 ≤ 𝑁 → ( 𝜒 → 𝜃 ) ) ) |
33 |
24 32
|
mpd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
34 |
33
|
adantll |
⊢ ( ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
35 |
1 2 3 4 12 34
|
fzind |
⊢ ( ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
36 |
9 35
|
mpanl1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
37 |
36
|
expcom |
⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℤ → 𝜏 ) ) |
38 |
8 37
|
syl5 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
39 |
38
|
3expa |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
40 |
7 39
|
sylanb |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
41 |
40
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
42 |
41
|
3impb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) → 𝜏 ) |