| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnn0ind.1 |
⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
fnn0ind.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
fnn0ind.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) |
| 4 |
|
fnn0ind.4 |
⊢ ( 𝑥 = 𝐾 → ( 𝜑 ↔ 𝜏 ) ) |
| 5 |
|
fnn0ind.5 |
⊢ ( 𝑁 ∈ ℕ0 → 𝜓 ) |
| 6 |
|
fnn0ind.6 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) → ( 𝜒 → 𝜃 ) ) |
| 7 |
|
elnn0z |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ) |
| 8 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 9 |
|
0z |
⊢ 0 ∈ ℤ |
| 10 |
|
elnn0z |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| 11 |
10 5
|
sylbir |
⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → 𝜓 ) |
| 12 |
11
|
3adant1 |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → 𝜓 ) |
| 13 |
|
0re |
⊢ 0 ∈ ℝ |
| 14 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
| 15 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 16 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 < 𝑁 ) ) |
| 17 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
| 18 |
17
|
3adant2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
| 19 |
16 18
|
syld |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) |
| 20 |
13 14 15 19
|
mp3an3an |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) |
| 21 |
20
|
ex |
⊢ ( 𝑦 ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) ) |
| 22 |
21
|
com23 |
⊢ ( 𝑦 ∈ ℤ → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → 0 ≤ 𝑁 ) ) ) |
| 23 |
22
|
3impib |
⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → 0 ≤ 𝑁 ) ) |
| 24 |
23
|
impcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → 0 ≤ 𝑁 ) |
| 25 |
|
elnn0z |
⊢ ( 𝑦 ∈ ℕ0 ↔ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) |
| 26 |
25
|
anbi1i |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) ↔ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) ) |
| 27 |
6
|
3expb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 28 |
10 26 27
|
syl2anbr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ∧ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 29 |
28
|
expcom |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) → ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 30 |
29
|
3impa |
⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 31 |
30
|
expd |
⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → ( 0 ≤ 𝑁 → ( 𝜒 → 𝜃 ) ) ) ) |
| 32 |
31
|
impcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 0 ≤ 𝑁 → ( 𝜒 → 𝜃 ) ) ) |
| 33 |
24 32
|
mpd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 34 |
33
|
adantll |
⊢ ( ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 35 |
1 2 3 4 12 34
|
fzind |
⊢ ( ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
| 36 |
9 35
|
mpanl1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
| 37 |
36
|
expcom |
⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℤ → 𝜏 ) ) |
| 38 |
8 37
|
syl5 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
| 39 |
38
|
3expa |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
| 40 |
7 39
|
sylanb |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
| 41 |
40
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
| 42 |
41
|
3impb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) → 𝜏 ) |