| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0ind-raph.1 | ⊢ ( 𝑥  =  0  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | nn0ind-raph.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | nn0ind-raph.3 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | nn0ind-raph.4 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | nn0ind-raph.5 | ⊢ 𝜓 | 
						
							| 6 |  | nn0ind-raph.6 | ⊢ ( 𝑦  ∈  ℕ0  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | elnn0 | ⊢ ( 𝐴  ∈  ℕ0  ↔  ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 ) ) | 
						
							| 8 |  | dfsbcq2 | ⊢ ( 𝑧  =  1  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 1  /  𝑥 ] 𝜑 ) ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 10 | 9 2 | sbhypf | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜒 ) ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑥 𝜃 | 
						
							| 12 | 11 3 | sbhypf | ⊢ ( 𝑧  =  ( 𝑦  +  1 )  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜃 ) ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑥 𝜏 | 
						
							| 14 | 13 4 | sbhypf | ⊢ ( 𝑧  =  𝐴  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜏 ) ) | 
						
							| 15 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 1  /  𝑥 ] 𝜑 | 
						
							| 16 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 17 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 18 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 19 |  | eleq1a | ⊢ ( 0  ∈  ℕ0  →  ( 𝑦  =  0  →  𝑦  ∈  ℕ0 ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( 𝑦  =  0  →  𝑦  ∈  ℕ0 ) | 
						
							| 21 | 5 1 | mpbiri | ⊢ ( 𝑥  =  0  →  𝜑 ) | 
						
							| 22 |  | eqeq2 | ⊢ ( 𝑦  =  0  →  ( 𝑥  =  𝑦  ↔  𝑥  =  0 ) ) | 
						
							| 23 | 22 2 | biimtrrdi | ⊢ ( 𝑦  =  0  →  ( 𝑥  =  0  →  ( 𝜑  ↔  𝜒 ) ) ) | 
						
							| 24 | 23 | pm5.74d | ⊢ ( 𝑦  =  0  →  ( ( 𝑥  =  0  →  𝜑 )  ↔  ( 𝑥  =  0  →  𝜒 ) ) ) | 
						
							| 25 | 21 24 | mpbii | ⊢ ( 𝑦  =  0  →  ( 𝑥  =  0  →  𝜒 ) ) | 
						
							| 26 | 25 | com12 | ⊢ ( 𝑥  =  0  →  ( 𝑦  =  0  →  𝜒 ) ) | 
						
							| 27 | 17 26 | vtocle | ⊢ ( 𝑦  =  0  →  𝜒 ) | 
						
							| 28 | 20 27 6 | sylc | ⊢ ( 𝑦  =  0  →  𝜃 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑦  =  0  ∧  𝑥  =  1 )  →  𝜃 ) | 
						
							| 30 |  | oveq1 | ⊢ ( 𝑦  =  0  →  ( 𝑦  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 31 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 32 | 30 31 | eqtrdi | ⊢ ( 𝑦  =  0  →  ( 𝑦  +  1 )  =  1 ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( 𝑦  =  0  →  ( 𝑥  =  ( 𝑦  +  1 )  ↔  𝑥  =  1 ) ) | 
						
							| 34 | 33 3 | biimtrrdi | ⊢ ( 𝑦  =  0  →  ( 𝑥  =  1  →  ( 𝜑  ↔  𝜃 ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( 𝑦  =  0  ∧  𝑥  =  1 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 36 | 29 35 | mpbird | ⊢ ( ( 𝑦  =  0  ∧  𝑥  =  1 )  →  𝜑 ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝑦  =  0  →  ( 𝑥  =  1  →  𝜑 ) ) | 
						
							| 38 | 17 37 | vtocle | ⊢ ( 𝑥  =  1  →  𝜑 ) | 
						
							| 39 |  | sbceq1a | ⊢ ( 𝑥  =  1  →  ( 𝜑  ↔  [ 1  /  𝑥 ] 𝜑 ) ) | 
						
							| 40 | 38 39 | mpbid | ⊢ ( 𝑥  =  1  →  [ 1  /  𝑥 ] 𝜑 ) | 
						
							| 41 | 15 16 40 | vtoclef | ⊢ [ 1  /  𝑥 ] 𝜑 | 
						
							| 42 |  | nnnn0 | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℕ0 ) | 
						
							| 43 | 42 6 | syl | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 44 | 8 10 12 14 41 43 | nnind | ⊢ ( 𝐴  ∈  ℕ  →  𝜏 ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑥 ( 0  =  𝐴  →  𝜏 ) | 
						
							| 46 |  | eqeq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  =  𝐴  ↔  0  =  𝐴 ) ) | 
						
							| 47 | 1 | bicomd | ⊢ ( 𝑥  =  0  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 48 | 47 4 | sylan9bb | ⊢ ( ( 𝑥  =  0  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 49 | 5 48 | mpbii | ⊢ ( ( 𝑥  =  0  ∧  𝑥  =  𝐴 )  →  𝜏 ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝑥  =  0  →  ( 𝑥  =  𝐴  →  𝜏 ) ) | 
						
							| 51 | 46 50 | sylbird | ⊢ ( 𝑥  =  0  →  ( 0  =  𝐴  →  𝜏 ) ) | 
						
							| 52 | 45 17 51 | vtoclef | ⊢ ( 0  =  𝐴  →  𝜏 ) | 
						
							| 53 | 52 | eqcoms | ⊢ ( 𝐴  =  0  →  𝜏 ) | 
						
							| 54 | 44 53 | jaoi | ⊢ ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  →  𝜏 ) | 
						
							| 55 | 7 54 | sylbi | ⊢ ( 𝐴  ∈  ℕ0  →  𝜏 ) |