Step |
Hyp |
Ref |
Expression |
1 |
|
mulgass.b |
โข ๐ต = ( Base โ ๐บ ) |
2 |
|
mulgass.t |
โข ยท = ( .g โ ๐บ ) |
3 |
|
simpr1 |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ๐ โ โค ) |
4 |
|
elznn0 |
โข ( ๐ โ โค โ ( ๐ โ โ โง ( ๐ โ โ0 โจ - ๐ โ โ0 ) ) ) |
5 |
4
|
simprbi |
โข ( ๐ โ โค โ ( ๐ โ โ0 โจ - ๐ โ โ0 ) ) |
6 |
3 5
|
syl |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ๐ โ โ0 โจ - ๐ โ โ0 ) ) |
7 |
|
simpr2 |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ๐ โ โค ) |
8 |
|
elznn0 |
โข ( ๐ โ โค โ ( ๐ โ โ โง ( ๐ โ โ0 โจ - ๐ โ โ0 ) ) ) |
9 |
8
|
simprbi |
โข ( ๐ โ โค โ ( ๐ โ โ0 โจ - ๐ โ โ0 ) ) |
10 |
7 9
|
syl |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ๐ โ โ0 โจ - ๐ โ โ0 ) ) |
11 |
|
grpmnd |
โข ( ๐บ โ Grp โ ๐บ โ Mnd ) |
12 |
11
|
ad2antrr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง ๐ โ โ0 ) ) โ ๐บ โ Mnd ) |
13 |
|
simprl |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง ๐ โ โ0 ) ) โ ๐ โ โ0 ) |
14 |
|
simprr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง ๐ โ โ0 ) ) โ ๐ โ โ0 ) |
15 |
|
simplr3 |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง ๐ โ โ0 ) ) โ ๐ โ ๐ต ) |
16 |
1 2
|
mulgnn0ass |
โข ( ( ๐บ โ Mnd โง ( ๐ โ โ0 โง ๐ โ โ0 โง ๐ โ ๐ต ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
17 |
12 13 14 15 16
|
syl13anc |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง ๐ โ โ0 ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
18 |
17
|
ex |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( ๐ โ โ0 โง ๐ โ โ0 ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
19 |
3
|
zcnd |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ๐ โ โ ) |
20 |
7
|
zcnd |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ๐ โ โ ) |
21 |
19 20
|
mulneg1d |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( - ๐ ยท ๐ ) = - ( ๐ ยท ๐ ) ) |
22 |
21
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ ( - ๐ ยท ๐ ) = - ( ๐ ยท ๐ ) ) |
23 |
22
|
oveq1d |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ ( ( - ๐ ยท ๐ ) ยท ๐ ) = ( - ( ๐ ยท ๐ ) ยท ๐ ) ) |
24 |
11
|
ad2antrr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ ๐บ โ Mnd ) |
25 |
|
simprl |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ - ๐ โ โ0 ) |
26 |
|
simprr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ ๐ โ โ0 ) |
27 |
|
simpr3 |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ๐ โ ๐ต ) |
28 |
27
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ ๐ โ ๐ต ) |
29 |
1 2
|
mulgnn0ass |
โข ( ( ๐บ โ Mnd โง ( - ๐ โ โ0 โง ๐ โ โ0 โง ๐ โ ๐ต ) ) โ ( ( - ๐ ยท ๐ ) ยท ๐ ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) ) |
30 |
24 25 26 28 29
|
syl13anc |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ ( ( - ๐ ยท ๐ ) ยท ๐ ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) ) |
31 |
23 30
|
eqtr3d |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ ( - ( ๐ ยท ๐ ) ยท ๐ ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) ) |
32 |
|
fveq2 |
โข ( ( - ( ๐ ยท ๐ ) ยท ๐ ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) โ ( ( invg โ ๐บ ) โ ( - ( ๐ ยท ๐ ) ยท ๐ ) ) = ( ( invg โ ๐บ ) โ ( - ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
33 |
|
simpl |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ๐บ โ Grp ) |
34 |
3 7
|
zmulcld |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ๐ ยท ๐ ) โ โค ) |
35 |
|
eqid |
โข ( invg โ ๐บ ) = ( invg โ ๐บ ) |
36 |
1 2 35
|
mulgneg |
โข ( ( ๐บ โ Grp โง ( ๐ ยท ๐ ) โ โค โง ๐ โ ๐ต ) โ ( - ( ๐ ยท ๐ ) ยท ๐ ) = ( ( invg โ ๐บ ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) ) ) |
37 |
33 34 27 36
|
syl3anc |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( - ( ๐ ยท ๐ ) ยท ๐ ) = ( ( invg โ ๐บ ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) ) ) |
38 |
37
|
fveq2d |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( invg โ ๐บ ) โ ( - ( ๐ ยท ๐ ) ยท ๐ ) ) = ( ( invg โ ๐บ ) โ ( ( invg โ ๐บ ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) ) ) ) |
39 |
1 2
|
mulgcl |
โข ( ( ๐บ โ Grp โง ( ๐ ยท ๐ ) โ โค โง ๐ โ ๐ต ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) โ ๐ต ) |
40 |
33 34 27 39
|
syl3anc |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) โ ๐ต ) |
41 |
1 35
|
grpinvinv |
โข ( ( ๐บ โ Grp โง ( ( ๐ ยท ๐ ) ยท ๐ ) โ ๐ต ) โ ( ( invg โ ๐บ ) โ ( ( invg โ ๐บ ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) ) ) = ( ( ๐ ยท ๐ ) ยท ๐ ) ) |
42 |
40 41
|
syldan |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( invg โ ๐บ ) โ ( ( invg โ ๐บ ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) ) ) = ( ( ๐ ยท ๐ ) ยท ๐ ) ) |
43 |
38 42
|
eqtrd |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( invg โ ๐บ ) โ ( - ( ๐ ยท ๐ ) ยท ๐ ) ) = ( ( ๐ ยท ๐ ) ยท ๐ ) ) |
44 |
1 2
|
mulgcl |
โข ( ( ๐บ โ Grp โง ๐ โ โค โง ๐ โ ๐ต ) โ ( ๐ ยท ๐ ) โ ๐ต ) |
45 |
33 7 27 44
|
syl3anc |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ๐ ยท ๐ ) โ ๐ต ) |
46 |
1 2 35
|
mulgneg |
โข ( ( ๐บ โ Grp โง ๐ โ โค โง ( ๐ ยท ๐ ) โ ๐ต ) โ ( - ๐ ยท ( ๐ ยท ๐ ) ) = ( ( invg โ ๐บ ) โ ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
47 |
33 3 45 46
|
syl3anc |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( - ๐ ยท ( ๐ ยท ๐ ) ) = ( ( invg โ ๐บ ) โ ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
48 |
47
|
fveq2d |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( invg โ ๐บ ) โ ( - ๐ ยท ( ๐ ยท ๐ ) ) ) = ( ( invg โ ๐บ ) โ ( ( invg โ ๐บ ) โ ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) ) |
49 |
1 2
|
mulgcl |
โข ( ( ๐บ โ Grp โง ๐ โ โค โง ( ๐ ยท ๐ ) โ ๐ต ) โ ( ๐ ยท ( ๐ ยท ๐ ) ) โ ๐ต ) |
50 |
33 3 45 49
|
syl3anc |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ๐ ยท ( ๐ ยท ๐ ) ) โ ๐ต ) |
51 |
1 35
|
grpinvinv |
โข ( ( ๐บ โ Grp โง ( ๐ ยท ( ๐ ยท ๐ ) ) โ ๐ต ) โ ( ( invg โ ๐บ ) โ ( ( invg โ ๐บ ) โ ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
52 |
50 51
|
syldan |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( invg โ ๐บ ) โ ( ( invg โ ๐บ ) โ ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
53 |
48 52
|
eqtrd |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( invg โ ๐บ ) โ ( - ๐ ยท ( ๐ ยท ๐ ) ) ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
54 |
43 53
|
eqeq12d |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( ( invg โ ๐บ ) โ ( - ( ๐ ยท ๐ ) ยท ๐ ) ) = ( ( invg โ ๐บ ) โ ( - ๐ ยท ( ๐ ยท ๐ ) ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
55 |
32 54
|
imbitrid |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( - ( ๐ ยท ๐ ) ยท ๐ ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
56 |
55
|
imp |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ( ๐ ยท ๐ ) ยท ๐ ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
57 |
31 56
|
syldan |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง ๐ โ โ0 ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
58 |
57
|
ex |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( - ๐ โ โ0 โง ๐ โ โ0 ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
59 |
11
|
ad2antrr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ๐บ โ Mnd ) |
60 |
|
simprl |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ๐ โ โ0 ) |
61 |
|
simprr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ - ๐ โ โ0 ) |
62 |
27
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ๐ โ ๐ต ) |
63 |
1 2
|
mulgnn0ass |
โข ( ( ๐บ โ Mnd โง ( ๐ โ โ0 โง - ๐ โ โ0 โง ๐ โ ๐ต ) ) โ ( ( ๐ ยท - ๐ ) ยท ๐ ) = ( ๐ ยท ( - ๐ ยท ๐ ) ) ) |
64 |
59 60 61 62 63
|
syl13anc |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ( ๐ ยท - ๐ ) ยท ๐ ) = ( ๐ ยท ( - ๐ ยท ๐ ) ) ) |
65 |
19 20
|
mulneg2d |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ๐ ยท - ๐ ) = - ( ๐ ยท ๐ ) ) |
66 |
65
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ๐ ยท - ๐ ) = - ( ๐ ยท ๐ ) ) |
67 |
66
|
oveq1d |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ( ๐ ยท - ๐ ) ยท ๐ ) = ( - ( ๐ ยท ๐ ) ยท ๐ ) ) |
68 |
1 2 35
|
mulgneg |
โข ( ( ๐บ โ Grp โง ๐ โ โค โง ๐ โ ๐ต ) โ ( - ๐ ยท ๐ ) = ( ( invg โ ๐บ ) โ ( ๐ ยท ๐ ) ) ) |
69 |
33 7 27 68
|
syl3anc |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( - ๐ ยท ๐ ) = ( ( invg โ ๐บ ) โ ( ๐ ยท ๐ ) ) ) |
70 |
69
|
oveq2d |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ๐ ยท ( - ๐ ยท ๐ ) ) = ( ๐ ยท ( ( invg โ ๐บ ) โ ( ๐ ยท ๐ ) ) ) ) |
71 |
1 2 35
|
mulgneg2 |
โข ( ( ๐บ โ Grp โง ๐ โ โค โง ( ๐ ยท ๐ ) โ ๐ต ) โ ( - ๐ ยท ( ๐ ยท ๐ ) ) = ( ๐ ยท ( ( invg โ ๐บ ) โ ( ๐ ยท ๐ ) ) ) ) |
72 |
33 3 45 71
|
syl3anc |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( - ๐ ยท ( ๐ ยท ๐ ) ) = ( ๐ ยท ( ( invg โ ๐บ ) โ ( ๐ ยท ๐ ) ) ) ) |
73 |
70 72
|
eqtr4d |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ๐ ยท ( - ๐ ยท ๐ ) ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) ) |
74 |
73
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ๐ ยท ( - ๐ ยท ๐ ) ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) ) |
75 |
64 67 74
|
3eqtr3d |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( - ( ๐ ยท ๐ ) ยท ๐ ) = ( - ๐ ยท ( ๐ ยท ๐ ) ) ) |
76 |
75 56
|
syldan |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
77 |
76
|
ex |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( ๐ โ โ0 โง - ๐ โ โ0 ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
78 |
11
|
ad2antrr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ๐บ โ Mnd ) |
79 |
|
simprl |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ - ๐ โ โ0 ) |
80 |
|
simprr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ - ๐ โ โ0 ) |
81 |
27
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ๐ โ ๐ต ) |
82 |
1 2
|
mulgnn0ass |
โข ( ( ๐บ โ Mnd โง ( - ๐ โ โ0 โง - ๐ โ โ0 โง ๐ โ ๐ต ) ) โ ( ( - ๐ ยท - ๐ ) ยท ๐ ) = ( - ๐ ยท ( - ๐ ยท ๐ ) ) ) |
83 |
78 79 80 81 82
|
syl13anc |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ( - ๐ ยท - ๐ ) ยท ๐ ) = ( - ๐ ยท ( - ๐ ยท ๐ ) ) ) |
84 |
19 20
|
mul2negd |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( - ๐ ยท - ๐ ) = ( ๐ ยท ๐ ) ) |
85 |
84
|
oveq1d |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( - ๐ ยท - ๐ ) ยท ๐ ) = ( ( ๐ ยท ๐ ) ยท ๐ ) ) |
86 |
85
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ( - ๐ ยท - ๐ ) ยท ๐ ) = ( ( ๐ ยท ๐ ) ยท ๐ ) ) |
87 |
33
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ๐บ โ Grp ) |
88 |
3
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ๐ โ โค ) |
89 |
|
nn0z |
โข ( - ๐ โ โ0 โ - ๐ โ โค ) |
90 |
89
|
ad2antll |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ - ๐ โ โค ) |
91 |
1 2
|
mulgcl |
โข ( ( ๐บ โ Grp โง - ๐ โ โค โง ๐ โ ๐ต ) โ ( - ๐ ยท ๐ ) โ ๐ต ) |
92 |
87 90 81 91
|
syl3anc |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( - ๐ ยท ๐ ) โ ๐ต ) |
93 |
1 2 35
|
mulgneg2 |
โข ( ( ๐บ โ Grp โง ๐ โ โค โง ( - ๐ ยท ๐ ) โ ๐ต ) โ ( - ๐ ยท ( - ๐ ยท ๐ ) ) = ( ๐ ยท ( ( invg โ ๐บ ) โ ( - ๐ ยท ๐ ) ) ) ) |
94 |
87 88 92 93
|
syl3anc |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( - ๐ ยท ( - ๐ ยท ๐ ) ) = ( ๐ ยท ( ( invg โ ๐บ ) โ ( - ๐ ยท ๐ ) ) ) ) |
95 |
1 2 35
|
mulgneg |
โข ( ( ๐บ โ Grp โง - ๐ โ โค โง ๐ โ ๐ต ) โ ( - - ๐ ยท ๐ ) = ( ( invg โ ๐บ ) โ ( - ๐ ยท ๐ ) ) ) |
96 |
87 90 81 95
|
syl3anc |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( - - ๐ ยท ๐ ) = ( ( invg โ ๐บ ) โ ( - ๐ ยท ๐ ) ) ) |
97 |
20
|
negnegd |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ - - ๐ = ๐ ) |
98 |
97
|
adantr |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ - - ๐ = ๐ ) |
99 |
98
|
oveq1d |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( - - ๐ ยท ๐ ) = ( ๐ ยท ๐ ) ) |
100 |
96 99
|
eqtr3d |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ( invg โ ๐บ ) โ ( - ๐ ยท ๐ ) ) = ( ๐ ยท ๐ ) ) |
101 |
100
|
oveq2d |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ๐ ยท ( ( invg โ ๐บ ) โ ( - ๐ ยท ๐ ) ) ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
102 |
94 101
|
eqtrd |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( - ๐ ยท ( - ๐ ยท ๐ ) ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
103 |
83 86 102
|
3eqtr3d |
โข ( ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โง ( - ๐ โ โ0 โง - ๐ โ โ0 ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |
104 |
103
|
ex |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( - ๐ โ โ0 โง - ๐ โ โ0 ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
105 |
18 58 77 104
|
ccased |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( ( ๐ โ โ0 โจ - ๐ โ โ0 ) โง ( ๐ โ โ0 โจ - ๐ โ โ0 ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) ) |
106 |
6 10 105
|
mp2and |
โข ( ( ๐บ โ Grp โง ( ๐ โ โค โง ๐ โ โค โง ๐ โ ๐ต ) ) โ ( ( ๐ ยท ๐ ) ยท ๐ ) = ( ๐ ยท ( ๐ ยท ๐ ) ) ) |