Step |
Hyp |
Ref |
Expression |
1 |
|
mulgneg2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgneg2.m |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgneg2.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
negeq |
⊢ ( 𝑥 = 0 → - 𝑥 = - 0 ) |
5 |
|
neg0 |
⊢ - 0 = 0 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝑥 = 0 → - 𝑥 = 0 ) |
7 |
6
|
oveq1d |
⊢ ( 𝑥 = 0 → ( - 𝑥 · 𝑋 ) = ( 0 · 𝑋 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( 0 · 𝑋 ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
10 |
|
negeq |
⊢ ( 𝑥 = 𝑛 → - 𝑥 = - 𝑛 ) |
11 |
10
|
oveq1d |
⊢ ( 𝑥 = 𝑛 → ( - 𝑥 · 𝑋 ) = ( - 𝑛 · 𝑋 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
14 |
|
negeq |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → - 𝑥 = - ( 𝑛 + 1 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( - 𝑥 · 𝑋 ) = ( - ( 𝑛 + 1 ) · 𝑋 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) ) |
18 |
|
negeq |
⊢ ( 𝑥 = - 𝑛 → - 𝑥 = - - 𝑛 ) |
19 |
18
|
oveq1d |
⊢ ( 𝑥 = - 𝑛 → ( - 𝑥 · 𝑋 ) = ( - - 𝑛 · 𝑋 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑛 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) |
21 |
19 20
|
eqeq12d |
⊢ ( 𝑥 = - 𝑛 → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( - - 𝑛 · 𝑋 ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
22 |
|
negeq |
⊢ ( 𝑥 = 𝑁 → - 𝑥 = - 𝑁 ) |
23 |
22
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( - 𝑥 · 𝑋 ) = ( - 𝑁 · 𝑋 ) ) |
24 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
27 |
1 26 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
29 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
30 |
1 26 2
|
mulg0 |
⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
32 |
28 31
|
eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) |
33 |
|
oveq1 |
⊢ ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
34 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℂ ) |
36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
37 |
|
negdi |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝑛 + 1 ) = ( - 𝑛 + - 1 ) ) |
38 |
35 36 37
|
sylancl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → - ( 𝑛 + 1 ) = ( - 𝑛 + - 1 ) ) |
39 |
38
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( - 𝑛 + - 1 ) · 𝑋 ) ) |
40 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Grp ) |
41 |
|
nn0negz |
⊢ ( 𝑛 ∈ ℕ0 → - 𝑛 ∈ ℤ ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → - 𝑛 ∈ ℤ ) |
43 |
|
1z |
⊢ 1 ∈ ℤ |
44 |
|
znegcl |
⊢ ( 1 ∈ ℤ → - 1 ∈ ℤ ) |
45 |
43 44
|
mp1i |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → - 1 ∈ ℤ ) |
46 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
47 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
48 |
1 2 47
|
mulgdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( - 𝑛 ∈ ℤ ∧ - 1 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( - 𝑛 + - 1 ) · 𝑋 ) = ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 1 · 𝑋 ) ) ) |
49 |
40 42 45 46 48
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 𝑛 + - 1 ) · 𝑋 ) = ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 1 · 𝑋 ) ) ) |
50 |
1 2 3
|
mulgm1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) |
52 |
51
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 1 · 𝑋 ) ) = ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
53 |
39 49 52
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
54 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
56 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
57 |
29
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
58 |
1 2 47
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
59 |
55 56 57 58
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
60 |
53 59
|
eqeq12d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ↔ ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) ) |
61 |
33 60
|
syl5ibr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) ) |
62 |
61
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 → ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) ) ) |
63 |
|
fveq2 |
⊢ ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( 𝐼 ‘ ( - 𝑛 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
64 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐺 ∈ Grp ) |
65 |
|
nnnegz |
⊢ ( 𝑛 ∈ ℕ → - 𝑛 ∈ ℤ ) |
66 |
65
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → - 𝑛 ∈ ℤ ) |
67 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) |
68 |
1 2 3
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑛 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑛 · 𝑋 ) ) ) |
69 |
64 66 67 68
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( - - 𝑛 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑛 · 𝑋 ) ) ) |
70 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
71 |
1 2 3
|
mulgnegnn |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
72 |
70 29 71
|
syl2anr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
73 |
69 72
|
eqeq12d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( ( - - 𝑛 · 𝑋 ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( 𝐼 ‘ ( - 𝑛 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) ) |
74 |
63 73
|
syl5ibr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( - - 𝑛 · 𝑋 ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
75 |
74
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ → ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( - - 𝑛 · 𝑋 ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) ) |
76 |
9 13 17 21 25 32 62 75
|
zindd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
77 |
76
|
3impia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℤ ) → ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) |
78 |
77
|
3com23 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) |