| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgneg2.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgneg2.m |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgneg2.i |
|- I = ( invg ` G ) |
| 4 |
|
negeq |
|- ( x = 0 -> -u x = -u 0 ) |
| 5 |
|
neg0 |
|- -u 0 = 0 |
| 6 |
4 5
|
eqtrdi |
|- ( x = 0 -> -u x = 0 ) |
| 7 |
6
|
oveq1d |
|- ( x = 0 -> ( -u x .x. X ) = ( 0 .x. X ) ) |
| 8 |
|
oveq1 |
|- ( x = 0 -> ( x .x. ( I ` X ) ) = ( 0 .x. ( I ` X ) ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( x = 0 -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( 0 .x. X ) = ( 0 .x. ( I ` X ) ) ) ) |
| 10 |
|
negeq |
|- ( x = n -> -u x = -u n ) |
| 11 |
10
|
oveq1d |
|- ( x = n -> ( -u x .x. X ) = ( -u n .x. X ) ) |
| 12 |
|
oveq1 |
|- ( x = n -> ( x .x. ( I ` X ) ) = ( n .x. ( I ` X ) ) ) |
| 13 |
11 12
|
eqeq12d |
|- ( x = n -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( -u n .x. X ) = ( n .x. ( I ` X ) ) ) ) |
| 14 |
|
negeq |
|- ( x = ( n + 1 ) -> -u x = -u ( n + 1 ) ) |
| 15 |
14
|
oveq1d |
|- ( x = ( n + 1 ) -> ( -u x .x. X ) = ( -u ( n + 1 ) .x. X ) ) |
| 16 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x .x. ( I ` X ) ) = ( ( n + 1 ) .x. ( I ` X ) ) ) |
| 17 |
15 16
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( -u ( n + 1 ) .x. X ) = ( ( n + 1 ) .x. ( I ` X ) ) ) ) |
| 18 |
|
negeq |
|- ( x = -u n -> -u x = -u -u n ) |
| 19 |
18
|
oveq1d |
|- ( x = -u n -> ( -u x .x. X ) = ( -u -u n .x. X ) ) |
| 20 |
|
oveq1 |
|- ( x = -u n -> ( x .x. ( I ` X ) ) = ( -u n .x. ( I ` X ) ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( x = -u n -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( -u -u n .x. X ) = ( -u n .x. ( I ` X ) ) ) ) |
| 22 |
|
negeq |
|- ( x = N -> -u x = -u N ) |
| 23 |
22
|
oveq1d |
|- ( x = N -> ( -u x .x. X ) = ( -u N .x. X ) ) |
| 24 |
|
oveq1 |
|- ( x = N -> ( x .x. ( I ` X ) ) = ( N .x. ( I ` X ) ) ) |
| 25 |
23 24
|
eqeq12d |
|- ( x = N -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) ) |
| 26 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 27 |
1 26 2
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 28 |
27
|
adantl |
|- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 29 |
1 3
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
| 30 |
1 26 2
|
mulg0 |
|- ( ( I ` X ) e. B -> ( 0 .x. ( I ` X ) ) = ( 0g ` G ) ) |
| 31 |
29 30
|
syl |
|- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. ( I ` X ) ) = ( 0g ` G ) ) |
| 32 |
28 31
|
eqtr4d |
|- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. X ) = ( 0 .x. ( I ` X ) ) ) |
| 33 |
|
oveq1 |
|- ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( ( -u n .x. X ) ( +g ` G ) ( I ` X ) ) = ( ( n .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) |
| 34 |
|
nn0cn |
|- ( n e. NN0 -> n e. CC ) |
| 35 |
34
|
adantl |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> n e. CC ) |
| 36 |
|
ax-1cn |
|- 1 e. CC |
| 37 |
|
negdi |
|- ( ( n e. CC /\ 1 e. CC ) -> -u ( n + 1 ) = ( -u n + -u 1 ) ) |
| 38 |
35 36 37
|
sylancl |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> -u ( n + 1 ) = ( -u n + -u 1 ) ) |
| 39 |
38
|
oveq1d |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( -u ( n + 1 ) .x. X ) = ( ( -u n + -u 1 ) .x. X ) ) |
| 40 |
|
simpll |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> G e. Grp ) |
| 41 |
|
nn0negz |
|- ( n e. NN0 -> -u n e. ZZ ) |
| 42 |
41
|
adantl |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> -u n e. ZZ ) |
| 43 |
|
1z |
|- 1 e. ZZ |
| 44 |
|
znegcl |
|- ( 1 e. ZZ -> -u 1 e. ZZ ) |
| 45 |
43 44
|
mp1i |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> -u 1 e. ZZ ) |
| 46 |
|
simplr |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> X e. B ) |
| 47 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 48 |
1 2 47
|
mulgdir |
|- ( ( G e. Grp /\ ( -u n e. ZZ /\ -u 1 e. ZZ /\ X e. B ) ) -> ( ( -u n + -u 1 ) .x. X ) = ( ( -u n .x. X ) ( +g ` G ) ( -u 1 .x. X ) ) ) |
| 49 |
40 42 45 46 48
|
syl13anc |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( -u n + -u 1 ) .x. X ) = ( ( -u n .x. X ) ( +g ` G ) ( -u 1 .x. X ) ) ) |
| 50 |
1 2 3
|
mulgm1 |
|- ( ( G e. Grp /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` X ) ) |
| 51 |
50
|
adantr |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( -u 1 .x. X ) = ( I ` X ) ) |
| 52 |
51
|
oveq2d |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( -u n .x. X ) ( +g ` G ) ( -u 1 .x. X ) ) = ( ( -u n .x. X ) ( +g ` G ) ( I ` X ) ) ) |
| 53 |
39 49 52
|
3eqtrd |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( -u ( n + 1 ) .x. X ) = ( ( -u n .x. X ) ( +g ` G ) ( I ` X ) ) ) |
| 54 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
| 55 |
54
|
ad2antrr |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> G e. Mnd ) |
| 56 |
|
simpr |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> n e. NN0 ) |
| 57 |
29
|
adantr |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( I ` X ) e. B ) |
| 58 |
1 2 47
|
mulgnn0p1 |
|- ( ( G e. Mnd /\ n e. NN0 /\ ( I ` X ) e. B ) -> ( ( n + 1 ) .x. ( I ` X ) ) = ( ( n .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) |
| 59 |
55 56 57 58
|
syl3anc |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( n + 1 ) .x. ( I ` X ) ) = ( ( n .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) |
| 60 |
53 59
|
eqeq12d |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( -u ( n + 1 ) .x. X ) = ( ( n + 1 ) .x. ( I ` X ) ) <-> ( ( -u n .x. X ) ( +g ` G ) ( I ` X ) ) = ( ( n .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) ) |
| 61 |
33 60
|
imbitrrid |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( -u ( n + 1 ) .x. X ) = ( ( n + 1 ) .x. ( I ` X ) ) ) ) |
| 62 |
61
|
ex |
|- ( ( G e. Grp /\ X e. B ) -> ( n e. NN0 -> ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( -u ( n + 1 ) .x. X ) = ( ( n + 1 ) .x. ( I ` X ) ) ) ) ) |
| 63 |
|
fveq2 |
|- ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( I ` ( -u n .x. X ) ) = ( I ` ( n .x. ( I ` X ) ) ) ) |
| 64 |
|
simpll |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> G e. Grp ) |
| 65 |
|
nnnegz |
|- ( n e. NN -> -u n e. ZZ ) |
| 66 |
65
|
adantl |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> -u n e. ZZ ) |
| 67 |
|
simplr |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> X e. B ) |
| 68 |
1 2 3
|
mulgneg |
|- ( ( G e. Grp /\ -u n e. ZZ /\ X e. B ) -> ( -u -u n .x. X ) = ( I ` ( -u n .x. X ) ) ) |
| 69 |
64 66 67 68
|
syl3anc |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> ( -u -u n .x. X ) = ( I ` ( -u n .x. X ) ) ) |
| 70 |
|
id |
|- ( n e. NN -> n e. NN ) |
| 71 |
1 2 3
|
mulgnegnn |
|- ( ( n e. NN /\ ( I ` X ) e. B ) -> ( -u n .x. ( I ` X ) ) = ( I ` ( n .x. ( I ` X ) ) ) ) |
| 72 |
70 29 71
|
syl2anr |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> ( -u n .x. ( I ` X ) ) = ( I ` ( n .x. ( I ` X ) ) ) ) |
| 73 |
69 72
|
eqeq12d |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> ( ( -u -u n .x. X ) = ( -u n .x. ( I ` X ) ) <-> ( I ` ( -u n .x. X ) ) = ( I ` ( n .x. ( I ` X ) ) ) ) ) |
| 74 |
63 73
|
imbitrrid |
|- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( -u -u n .x. X ) = ( -u n .x. ( I ` X ) ) ) ) |
| 75 |
74
|
ex |
|- ( ( G e. Grp /\ X e. B ) -> ( n e. NN -> ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( -u -u n .x. X ) = ( -u n .x. ( I ` X ) ) ) ) ) |
| 76 |
9 13 17 21 25 32 62 75
|
zindd |
|- ( ( G e. Grp /\ X e. B ) -> ( N e. ZZ -> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) ) |
| 77 |
76
|
3impia |
|- ( ( G e. Grp /\ X e. B /\ N e. ZZ ) -> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) |
| 78 |
77
|
3com23 |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) |