Description: Distribution of negative over addition. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | negdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 + 𝐵 ) = ( - 𝐴 + - 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − - 𝐵 ) = ( 𝐴 + 𝐵 ) ) | |
2 | 1 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − - 𝐵 ) = - ( 𝐴 + 𝐵 ) ) |
3 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
4 | negsubdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → - ( 𝐴 − - 𝐵 ) = ( - 𝐴 + - 𝐵 ) ) | |
5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − - 𝐵 ) = ( - 𝐴 + - 𝐵 ) ) |
6 | 2 5 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 + 𝐵 ) = ( - 𝐴 + - 𝐵 ) ) |