Metamath Proof Explorer


Theorem negdi

Description: Distribution of negative over addition. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion negdi ABA+B=-A+B

Proof

Step Hyp Ref Expression
1 subneg ABAB=A+B
2 1 negeqd ABAB=A+B
3 negcl BB
4 negsubdi ABAB=-A+B
5 3 4 sylan2 ABAB=-A+B
6 2 5 eqtr3d ABA+B=-A+B