Metamath Proof Explorer


Theorem mulgassr

Description: Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses mulgass.b 𝐵 = ( Base ‘ 𝐺 )
mulgass.t · = ( .g𝐺 )
Assertion mulgassr ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) ) → ( ( 𝑁 · 𝑀 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 mulgass.b 𝐵 = ( Base ‘ 𝐺 )
2 mulgass.t · = ( .g𝐺 )
3 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
4 3 3ad2ant2 ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → 𝑁 ∈ ℂ )
5 zcn ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ )
6 5 3ad2ant1 ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → 𝑀 ∈ ℂ )
7 4 6 mulcomd ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) )
8 7 adantl ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) ) → ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) )
9 8 oveq1d ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) ) → ( ( 𝑁 · 𝑀 ) · 𝑋 ) = ( ( 𝑀 · 𝑁 ) · 𝑋 ) )
10 1 2 mulgass ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) ) → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) )
11 9 10 eqtrd ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) ) → ( ( 𝑁 · 𝑀 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) )