| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgass.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgass.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mndsgrp |
⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐺 ∈ Smgrp ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → 𝐺 ∈ Smgrp ) |
| 6 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → 𝑀 ∈ ℕ ) |
| 7 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℕ ) |
| 8 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → 𝑋 ∈ 𝐵 ) |
| 10 |
1 2
|
mulgnnass |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) |
| 11 |
5 6 7 9 10
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) |
| 12 |
11
|
expr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑁 ∈ ℕ → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 14 |
1 13 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 15 |
8 14
|
syl |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 16 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℕ0 ) |
| 17 |
16
|
nn0cnd |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℂ ) |
| 18 |
17
|
mul01d |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 · 0 ) = 0 ) |
| 19 |
18
|
oveq1d |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 0 ) · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 20 |
15
|
oveq2d |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 · ( 0 · 𝑋 ) ) = ( 𝑀 · ( 0g ‘ 𝐺 ) ) ) |
| 21 |
1 2 13
|
mulgnn0z |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 22 |
21
|
3ad2antr1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 · ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 23 |
20 22
|
eqtrd |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 · ( 0 · 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 24 |
15 19 23
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 0 ) · 𝑋 ) = ( 𝑀 · ( 0 · 𝑋 ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝑀 · 0 ) · 𝑋 ) = ( 𝑀 · ( 0 · 𝑋 ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑀 · 𝑁 ) = ( 𝑀 · 0 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( 𝑁 = 0 → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 0 ) · 𝑋 ) ) |
| 28 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑁 = 0 → ( 𝑀 · ( 𝑁 · 𝑋 ) ) = ( 𝑀 · ( 0 · 𝑋 ) ) ) |
| 30 |
27 29
|
eqeq12d |
⊢ ( 𝑁 = 0 → ( ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ↔ ( ( 𝑀 · 0 ) · 𝑋 ) = ( 𝑀 · ( 0 · 𝑋 ) ) ) ) |
| 31 |
25 30
|
syl5ibrcom |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑁 = 0 → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) ) |
| 32 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
| 33 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 34 |
32 33
|
sylib |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 36 |
12 31 35
|
mpjaod |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) |
| 37 |
36
|
ex |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 ∈ ℕ → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) ) |
| 38 |
32
|
nn0cnd |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ℂ ) |
| 39 |
38
|
mul02d |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 0 · 𝑁 ) = 0 ) |
| 40 |
39
|
oveq1d |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 0 · 𝑁 ) · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 41 |
1 2
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 42 |
41
|
3adant3r1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 43 |
1 13 2
|
mulg0 |
⊢ ( ( 𝑁 · 𝑋 ) ∈ 𝐵 → ( 0 · ( 𝑁 · 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 0 · ( 𝑁 · 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 45 |
15 40 44
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 0 · 𝑁 ) · 𝑋 ) = ( 0 · ( 𝑁 · 𝑋 ) ) ) |
| 46 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 · 𝑁 ) = ( 0 · 𝑁 ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( ( 0 · 𝑁 ) · 𝑋 ) ) |
| 48 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 · ( 𝑁 · 𝑋 ) ) = ( 0 · ( 𝑁 · 𝑋 ) ) ) |
| 49 |
47 48
|
eqeq12d |
⊢ ( 𝑀 = 0 → ( ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ↔ ( ( 0 · 𝑁 ) · 𝑋 ) = ( 0 · ( 𝑁 · 𝑋 ) ) ) ) |
| 50 |
45 49
|
syl5ibrcom |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 = 0 → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) ) |
| 51 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 52 |
16 51
|
sylib |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 53 |
37 50 52
|
mpjaod |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) |