Metamath Proof Explorer


Theorem mulgrhm2

Description: The powers of the element 1 give the unique ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypotheses mulgghm2.m · = ( .g𝑅 )
mulgghm2.f 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) )
mulgrhm.1 1 = ( 1r𝑅 )
Assertion mulgrhm2 ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { 𝐹 } )

Proof

Step Hyp Ref Expression
1 mulgghm2.m · = ( .g𝑅 )
2 mulgghm2.f 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) )
3 mulgrhm.1 1 = ( 1r𝑅 )
4 zringbas ℤ = ( Base ‘ ℤring )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 4 5 rhmf ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 : ℤ ⟶ ( Base ‘ 𝑅 ) )
7 6 adantl ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 : ℤ ⟶ ( Base ‘ 𝑅 ) )
8 7 feqmptd ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = ( 𝑛 ∈ ℤ ↦ ( 𝑓𝑛 ) ) )
9 rhmghm ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 ∈ ( ℤring GrpHom 𝑅 ) )
10 9 ad2antlr ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 𝑓 ∈ ( ℤring GrpHom 𝑅 ) )
11 simpr ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ )
12 1zzd ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 1 ∈ ℤ )
13 eqid ( .g ‘ ℤring ) = ( .g ‘ ℤring )
14 4 13 1 ghmmulg ( ( 𝑓 ∈ ( ℤring GrpHom 𝑅 ) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑛 · ( 𝑓 ‘ 1 ) ) )
15 10 11 12 14 syl3anc ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑛 · ( 𝑓 ‘ 1 ) ) )
16 ax-1cn 1 ∈ ℂ
17 cnfldmulg ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) )
18 16 17 mpan2 ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) )
19 1z 1 ∈ ℤ
20 18 adantr ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) )
21 zringmulg ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℤring ) 1 ) = ( 𝑛 · 1 ) )
22 20 21 eqtr4d ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 ( .g ‘ ℤring ) 1 ) )
23 19 22 mpan2 ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 ( .g ‘ ℤring ) 1 ) )
24 zcn ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ )
25 24 mulid1d ( 𝑛 ∈ ℤ → ( 𝑛 · 1 ) = 𝑛 )
26 18 23 25 3eqtr3d ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℤring ) 1 ) = 𝑛 )
27 26 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℤring ) 1 ) = 𝑛 )
28 27 fveq2d ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑓𝑛 ) )
29 zring1 1 = ( 1r ‘ ℤring )
30 29 3 rhm1 ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → ( 𝑓 ‘ 1 ) = 1 )
31 30 ad2antlr ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ 1 ) = 1 )
32 31 oveq2d ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · ( 𝑓 ‘ 1 ) ) = ( 𝑛 · 1 ) )
33 15 28 32 3eqtr3d ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓𝑛 ) = ( 𝑛 · 1 ) )
34 33 mpteq2dva ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → ( 𝑛 ∈ ℤ ↦ ( 𝑓𝑛 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) )
35 8 34 eqtrd ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) )
36 35 2 eqtr4di ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = 𝐹 )
37 velsn ( 𝑓 ∈ { 𝐹 } ↔ 𝑓 = 𝐹 )
38 36 37 sylibr ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 ∈ { 𝐹 } )
39 38 ex ( 𝑅 ∈ Ring → ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 ∈ { 𝐹 } ) )
40 39 ssrdv ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) ⊆ { 𝐹 } )
41 1 2 3 mulgrhm ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring RingHom 𝑅 ) )
42 41 snssd ( 𝑅 ∈ Ring → { 𝐹 } ⊆ ( ℤring RingHom 𝑅 ) )
43 40 42 eqssd ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { 𝐹 } )