| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 2 |
|
zaddcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
| 3 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
| 4 |
|
1z |
⊢ 1 ∈ ℤ |
| 5 |
1 2 3 4
|
cnsubglem |
⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
| 6 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
| 7 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
| 8 |
|
eqid |
⊢ ( .g ‘ ℤring ) = ( .g ‘ ℤring ) |
| 9 |
6 7 8
|
subgmulg |
⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) ) |
| 10 |
5 9
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
| 12 |
11
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 13 |
|
cnfldmulg |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 14 |
12 13
|
syldan |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 15 |
10 14
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( .g ‘ ℤring ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |