| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmirred.i |  | 
						
							| 2 |  | zringring |  | 
						
							| 3 |  | zring1 |  | 
						
							| 4 | 1 3 | irredn1 |  | 
						
							| 5 | 2 4 | mpan |  | 
						
							| 6 | 5 | anim2i |  | 
						
							| 7 |  | eluz2b3 |  | 
						
							| 8 | 6 7 | sylibr |  | 
						
							| 9 |  | nnz |  | 
						
							| 10 | 9 | ad2antrl |  | 
						
							| 11 |  | simprr |  | 
						
							| 12 |  | nnne0 |  | 
						
							| 13 | 12 | ad2antrl |  | 
						
							| 14 |  | nnz |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 |  | dvdsval2 |  | 
						
							| 17 | 10 13 15 16 | syl3anc |  | 
						
							| 18 | 11 17 | mpbid |  | 
						
							| 19 | 15 | zcnd |  | 
						
							| 20 |  | nncn |  | 
						
							| 21 | 20 | ad2antrl |  | 
						
							| 22 | 19 21 13 | divcan2d |  | 
						
							| 23 |  | simplr |  | 
						
							| 24 | 22 23 | eqeltrd |  | 
						
							| 25 |  | zringbas |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | zringmulr |  | 
						
							| 28 | 1 25 26 27 | irredmul |  | 
						
							| 29 | 10 18 24 28 | syl3anc |  | 
						
							| 30 |  | zringunit |  | 
						
							| 31 | 30 | baib |  | 
						
							| 32 | 10 31 | syl |  | 
						
							| 33 |  | nnnn0 |  | 
						
							| 34 |  | nn0re |  | 
						
							| 35 |  | nn0ge0 |  | 
						
							| 36 | 34 35 | absidd |  | 
						
							| 37 | 33 36 | syl |  | 
						
							| 38 | 37 | ad2antrl |  | 
						
							| 39 | 38 | eqeq1d |  | 
						
							| 40 | 32 39 | bitrd |  | 
						
							| 41 |  | zringunit |  | 
						
							| 42 | 41 | baib |  | 
						
							| 43 | 18 42 | syl |  | 
						
							| 44 |  | nnre |  | 
						
							| 45 | 44 | ad2antrr |  | 
						
							| 46 |  | simprl |  | 
						
							| 47 | 45 46 | nndivred |  | 
						
							| 48 |  | nnnn0 |  | 
						
							| 49 |  | nn0ge0 |  | 
						
							| 50 | 48 49 | syl |  | 
						
							| 51 | 50 | ad2antrr |  | 
						
							| 52 | 46 | nnred |  | 
						
							| 53 |  | nngt0 |  | 
						
							| 54 | 53 | ad2antrl |  | 
						
							| 55 |  | divge0 |  | 
						
							| 56 | 45 51 52 54 55 | syl22anc |  | 
						
							| 57 | 47 56 | absidd |  | 
						
							| 58 | 57 | eqeq1d |  | 
						
							| 59 |  | 1cnd |  | 
						
							| 60 | 19 21 59 13 | divmuld |  | 
						
							| 61 | 21 | mulridd |  | 
						
							| 62 | 61 | eqeq1d |  | 
						
							| 63 | 58 60 62 | 3bitrd |  | 
						
							| 64 | 43 63 | bitrd |  | 
						
							| 65 | 40 64 | orbi12d |  | 
						
							| 66 | 29 65 | mpbid |  | 
						
							| 67 | 66 | expr |  | 
						
							| 68 | 67 | ralrimiva |  | 
						
							| 69 |  | isprm2 |  | 
						
							| 70 | 8 68 69 | sylanbrc |  | 
						
							| 71 |  | prmz |  | 
						
							| 72 |  | 1nprm |  | 
						
							| 73 |  | zringunit |  | 
						
							| 74 |  | prmnn |  | 
						
							| 75 |  | nn0re |  | 
						
							| 76 | 75 49 | absidd |  | 
						
							| 77 | 74 48 76 | 3syl |  | 
						
							| 78 |  | id |  | 
						
							| 79 | 77 78 | eqeltrd |  | 
						
							| 80 |  | eleq1 |  | 
						
							| 81 | 79 80 | syl5ibcom |  | 
						
							| 82 | 81 | adantld |  | 
						
							| 83 | 73 82 | biimtrid |  | 
						
							| 84 | 72 83 | mtoi |  | 
						
							| 85 |  | dvdsmul1 |  | 
						
							| 86 | 85 | ad2antlr |  | 
						
							| 87 |  | simpr |  | 
						
							| 88 | 86 87 | breqtrd |  | 
						
							| 89 |  | simplrl |  | 
						
							| 90 | 71 | ad2antrr |  | 
						
							| 91 |  | absdvdsb |  | 
						
							| 92 | 89 90 91 | syl2anc |  | 
						
							| 93 | 88 92 | mpbid |  | 
						
							| 94 |  | breq1 |  | 
						
							| 95 |  | eqeq1 |  | 
						
							| 96 |  | eqeq1 |  | 
						
							| 97 | 95 96 | orbi12d |  | 
						
							| 98 | 94 97 | imbi12d |  | 
						
							| 99 | 69 | simprbi |  | 
						
							| 100 | 99 | ad2antrr |  | 
						
							| 101 | 89 | zcnd |  | 
						
							| 102 | 74 | ad2antrr |  | 
						
							| 103 | 102 | nnne0d |  | 
						
							| 104 |  | simplrr |  | 
						
							| 105 | 104 | zcnd |  | 
						
							| 106 | 105 | mul02d |  | 
						
							| 107 | 103 87 106 | 3netr4d |  | 
						
							| 108 |  | oveq1 |  | 
						
							| 109 | 108 | necon3i |  | 
						
							| 110 | 107 109 | syl |  | 
						
							| 111 | 101 110 | absne0d |  | 
						
							| 112 | 111 | neneqd |  | 
						
							| 113 |  | nn0abscl |  | 
						
							| 114 | 89 113 | syl |  | 
						
							| 115 |  | elnn0 |  | 
						
							| 116 | 114 115 | sylib |  | 
						
							| 117 | 116 | ord |  | 
						
							| 118 | 112 117 | mt3d |  | 
						
							| 119 | 98 100 118 | rspcdva |  | 
						
							| 120 | 93 119 | mpd |  | 
						
							| 121 |  | zringunit |  | 
						
							| 122 | 121 | baib |  | 
						
							| 123 | 89 122 | syl |  | 
						
							| 124 | 104 31 | syl |  | 
						
							| 125 | 105 | abscld |  | 
						
							| 126 | 125 | recnd |  | 
						
							| 127 |  | 1cnd |  | 
						
							| 128 | 101 | abscld |  | 
						
							| 129 | 128 | recnd |  | 
						
							| 130 | 126 127 129 111 | mulcand |  | 
						
							| 131 | 87 | fveq2d |  | 
						
							| 132 | 101 105 | absmuld |  | 
						
							| 133 | 77 | ad2antrr |  | 
						
							| 134 | 131 132 133 | 3eqtr3d |  | 
						
							| 135 | 129 | mulridd |  | 
						
							| 136 | 134 135 | eqeq12d |  | 
						
							| 137 |  | eqcom |  | 
						
							| 138 | 136 137 | bitrdi |  | 
						
							| 139 | 124 130 138 | 3bitr2d |  | 
						
							| 140 | 123 139 | orbi12d |  | 
						
							| 141 | 120 140 | mpbird |  | 
						
							| 142 | 141 | ex |  | 
						
							| 143 | 142 | ralrimivva |  | 
						
							| 144 | 25 26 1 27 | isirred2 |  | 
						
							| 145 | 71 84 143 144 | syl3anbrc |  | 
						
							| 146 | 145 | adantl |  | 
						
							| 147 | 70 146 | impbida |  |