Metamath Proof Explorer


Theorem divcan2d

Description: A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
Assertion divcan2d φBAB=A

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 divcan2 ABB0BAB=A
5 1 2 3 4 syl3anc φBAB=A