Metamath Proof Explorer


Theorem dvdsval2

Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013)

Ref Expression
Assertion dvdsval2 MM0NMNNM

Proof

Step Hyp Ref Expression
1 divides MNMNkk M=N
2 1 3adant2 MM0NMNkk M=N
3 zcn NN
4 3 3ad2ant3 MM0NN
5 4 adantr MM0NkN
6 zcn kk
7 6 adantl MM0Nkk
8 zcn MM
9 8 3ad2ant1 MM0NM
10 9 adantr MM0NkM
11 simpl2 MM0NkM0
12 5 7 10 11 divmul3d MM0NkNM=kN=k M
13 eqcom N=k Mk M=N
14 12 13 bitrdi MM0NkNM=kk M=N
15 14 biimprd MM0Nkk M=NNM=k
16 15 impr MM0Nkk M=NNM=k
17 simprl MM0Nkk M=Nk
18 16 17 eqeltrd MM0Nkk M=NNM
19 18 rexlimdvaa MM0Nkk M=NNM
20 simpr MM0NNMNM
21 simp2 MM0NM0
22 4 9 21 divcan1d MM0NNM M=N
23 22 adantr MM0NNMNM M=N
24 oveq1 k=NMk M=NM M
25 24 eqeq1d k=NMk M=NNM M=N
26 25 rspcev NMNM M=Nkk M=N
27 20 23 26 syl2anc MM0NNMkk M=N
28 27 ex MM0NNMkk M=N
29 19 28 impbid MM0Nkk M=NNM
30 2 29 bitrd MM0NMNNM