Metamath Proof Explorer


Theorem nn0abscl

Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion nn0abscl AA0

Proof

Step Hyp Ref Expression
1 zre AA
2 absz AAA
3 1 2 syl AAA
4 3 ibi AA
5 zcn AA
6 absge0 A0A
7 5 6 syl A0A
8 elnn0z A0A0A
9 4 7 8 sylanbrc AA0