Metamath Proof Explorer


Theorem absge0

Description: Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absge0 A0A

Proof

Step Hyp Ref Expression
1 cjmulrcl AAA
2 cjmulge0 A0AA
3 sqrtge0 AA0AA0AA
4 1 2 3 syl2anc A0AA
5 absval AA=AA
6 4 5 breqtrrd A0A