Metamath Proof Explorer


Theorem absge0

Description: Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absge0 A 0 A

Proof

Step Hyp Ref Expression
1 cjmulrcl A A A
2 cjmulge0 A 0 A A
3 sqrtge0 A A 0 A A 0 A A
4 1 2 3 syl2anc A 0 A A
5 absval A A = A A
6 4 5 breqtrrd A 0 A