Description: Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004) (Revised by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjmulrcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) | |
2 | cjmulge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
3 | sqrtge0 | ⊢ ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) → 0 ≤ ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
5 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
6 | 4 5 | breqtrrd | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |