Metamath Proof Explorer


Theorem absge0

Description: Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absge0 ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 cjmulrcl ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ )
2 cjmulge0 ( 𝐴 ∈ ℂ → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) )
3 sqrtge0 ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) → 0 ≤ ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
4 1 2 3 syl2anc ( 𝐴 ∈ ℂ → 0 ≤ ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
5 absval ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) )
6 4 5 breqtrrd ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) )