Metamath Proof Explorer


Theorem absge0

Description: Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absge0
|- ( A e. CC -> 0 <_ ( abs ` A ) )

Proof

Step Hyp Ref Expression
1 cjmulrcl
 |-  ( A e. CC -> ( A x. ( * ` A ) ) e. RR )
2 cjmulge0
 |-  ( A e. CC -> 0 <_ ( A x. ( * ` A ) ) )
3 sqrtge0
 |-  ( ( ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) -> 0 <_ ( sqrt ` ( A x. ( * ` A ) ) ) )
4 1 2 3 syl2anc
 |-  ( A e. CC -> 0 <_ ( sqrt ` ( A x. ( * ` A ) ) ) )
5 absval
 |-  ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) )
6 4 5 breqtrrd
 |-  ( A e. CC -> 0 <_ ( abs ` A ) )