Step |
Hyp |
Ref |
Expression |
1 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
2 |
1
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
3 |
|
simpl |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
4 |
3
|
cjmulrcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) e. RR ) |
5 |
3
|
cjmulge0d |
|- ( ( A e. CC /\ A =/= 0 ) -> 0 <_ ( A x. ( * ` A ) ) ) |
6 |
3
|
cjcld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
7 |
|
simpr |
|- ( ( A e. CC /\ A =/= 0 ) -> A =/= 0 ) |
8 |
3 7
|
cjne0d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) =/= 0 ) |
9 |
3 6 7 8
|
mulne0d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) =/= 0 ) |
10 |
4 5 9
|
ne0gt0d |
|- ( ( A e. CC /\ A =/= 0 ) -> 0 < ( A x. ( * ` A ) ) ) |
11 |
4 10
|
elrpd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) e. RR+ ) |
12 |
|
rpsqrtcl |
|- ( ( A x. ( * ` A ) ) e. RR+ -> ( sqrt ` ( A x. ( * ` A ) ) ) e. RR+ ) |
13 |
11 12
|
syl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( sqrt ` ( A x. ( * ` A ) ) ) e. RR+ ) |
14 |
2 13
|
eqeltrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |