Metamath Proof Explorer


Theorem absrpcl

Description: The absolute value of a nonzero number is a positive real. (Contributed by FL, 27-Dec-2007) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absrpcl AA0A+

Proof

Step Hyp Ref Expression
1 absval AA=AA
2 1 adantr AA0A=AA
3 simpl AA0A
4 3 cjmulrcld AA0AA
5 3 cjmulge0d AA00AA
6 3 cjcld AA0A
7 simpr AA0A0
8 3 7 cjne0d AA0A0
9 3 6 7 8 mulne0d AA0AA0
10 4 5 9 ne0gt0d AA00<AA
11 4 10 elrpd AA0AA+
12 rpsqrtcl AA+AA+
13 11 12 syl AA0AA+
14 2 13 eqeltrd AA0A+