Metamath Proof Explorer


Theorem ne0gt0d

Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ne0gt0d.2 φ0A
ne0gt0d.3 φA0
Assertion ne0gt0d φ0<A

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ne0gt0d.2 φ0A
3 ne0gt0d.3 φA0
4 ne0gt0 A0AA00<A
5 1 2 4 syl2anc φA00<A
6 3 5 mpbid φ0<A