Metamath Proof Explorer
Description: A nonzero nonnegative number is positive. (Contributed by Mario
Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ne0gt0d.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
|
|
ne0gt0d.3 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
|
Assertion |
ne0gt0d |
⊢ ( 𝜑 → 0 < 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ne0gt0d.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
3 |
|
ne0gt0d.3 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
4 |
|
ne0gt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) ) |
5 |
1 2 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) ) |
6 |
3 5
|
mpbid |
⊢ ( 𝜑 → 0 < 𝐴 ) |