Metamath Proof Explorer


Theorem ne0gt0d

Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ne0gt0d.2 ( 𝜑 → 0 ≤ 𝐴 )
ne0gt0d.3 ( 𝜑𝐴 ≠ 0 )
Assertion ne0gt0d ( 𝜑 → 0 < 𝐴 )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ne0gt0d.2 ( 𝜑 → 0 ≤ 𝐴 )
3 ne0gt0d.3 ( 𝜑𝐴 ≠ 0 )
4 ne0gt0 ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) )
5 1 2 4 syl2anc ( 𝜑 → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) )
6 3 5 mpbid ( 𝜑 → 0 < 𝐴 )