Metamath Proof Explorer


Theorem 3netr4d

Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012) (Proof shortened by Wolf Lammen, 21-Nov-2019)

Ref Expression
Hypotheses 3netr4d.1 φAB
3netr4d.2 φC=A
3netr4d.3 φD=B
Assertion 3netr4d φCD

Proof

Step Hyp Ref Expression
1 3netr4d.1 φAB
2 3netr4d.2 φC=A
3 3netr4d.3 φD=B
4 2 1 eqnetrd φCB
5 4 3 neeqtrrd φCD