Metamath Proof Explorer
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012) (Proof shortened by Wolf Lammen, 21-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
3netr4d.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
|
3netr4d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐴 ) |
|
|
3netr4d.3 |
⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
|
Assertion |
3netr4d |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3netr4d.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 2 |
|
3netr4d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐴 ) |
| 3 |
|
3netr4d.3 |
⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
| 4 |
2 1
|
eqnetrd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
| 5 |
4 3
|
neeqtrrd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |