Metamath Proof Explorer


Theorem divmuld

Description: Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divmuld.3 φC
divmuld.4 φB0
Assertion divmuld φAB=CBC=A

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divmuld.3 φC
4 divmuld.4 φB0
5 divmul ACBB0AB=CBC=A
6 1 3 2 4 5 syl112anc φAB=CBC=A