Metamath Proof Explorer


Theorem divmul

Description: Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Assertion divmul ABCC0AC=BCB=A

Proof

Step Hyp Ref Expression
1 divval ACC0AC=ιx|Cx=A
2 1 3expb ACC0AC=ιx|Cx=A
3 2 3adant2 ABCC0AC=ιx|Cx=A
4 3 eqeq1d ABCC0AC=Bιx|Cx=A=B
5 simp2 ABCC0B
6 receu ACC0∃!xCx=A
7 6 3expb ACC0∃!xCx=A
8 oveq2 x=BCx=CB
9 8 eqeq1d x=BCx=ACB=A
10 9 riota2 B∃!xCx=ACB=Aιx|Cx=A=B
11 5 7 10 3imp3i2an ABCC0CB=Aιx|Cx=A=B
12 4 11 bitr4d ABCC0AC=BCB=A