Metamath Proof Explorer


Theorem divval

Description: Value of division: if A and B are complex numbers with B nonzero, then ( A / B ) is the (unique) complex number such that ( B x. x ) = A . (Contributed by NM, 8-May-1999) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Assertion divval ABB0AB=ιx|Bx=A

Proof

Step Hyp Ref Expression
1 eldifsn B0BB0
2 eqeq2 z=Ayx=zyx=A
3 2 riotabidv z=Aιx|yx=z=ιx|yx=A
4 oveq1 y=Byx=Bx
5 4 eqeq1d y=Byx=ABx=A
6 5 riotabidv y=Bιx|yx=A=ιx|Bx=A
7 df-div ÷=z,y0ιx|yx=z
8 riotaex ιx|Bx=AV
9 3 6 7 8 ovmpo AB0AB=ιx|Bx=A
10 1 9 sylan2br ABB0AB=ιx|Bx=A
11 10 3impb ABB0AB=ιx|Bx=A