Metamath Proof Explorer


Definition df-div

Description: Define division. Theorem divmuli relates it to multiplication, and divcli and redivcli prove its closure laws. (Contributed by NM, 2-Feb-1995) Use divval instead. (Revised by Mario Carneiro, 1-Apr-2014) (New usage is discouraged.)

Ref Expression
Assertion df-div ÷=x,y0ιz|yz=x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdiv class÷
1 vx setvarx
2 cc class
3 vy setvary
4 cc0 class0
5 4 csn class0
6 2 5 cdif class0
7 vz setvarz
8 3 cv setvary
9 cmul class×
10 7 cv setvarz
11 8 10 9 co classyz
12 1 cv setvarx
13 11 12 wceq wffyz=x
14 13 7 2 crio classιz|yz=x
15 1 3 2 6 14 cmpo classx,y0ιz|yz=x
16 0 15 wceq wff÷=x,y0ιz|yz=x