Metamath Proof Explorer


Theorem mulcand

Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18. (Contributed by NM, 26-Jan-1995) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulcand.1 φA
mulcand.2 φB
mulcand.3 φC
mulcand.4 φC0
Assertion mulcand φCA=CBA=B

Proof

Step Hyp Ref Expression
1 mulcand.1 φA
2 mulcand.2 φB
3 mulcand.3 φC
4 mulcand.4 φC0
5 recex CC0xCx=1
6 3 4 5 syl2anc φxCx=1
7 oveq2 CA=CBxCA=xCB
8 simprl φxCx=1x
9 3 adantr φxCx=1C
10 8 9 mulcomd φxCx=1xC=Cx
11 simprr φxCx=1Cx=1
12 10 11 eqtrd φxCx=1xC=1
13 12 oveq1d φxCx=1xCA=1A
14 1 adantr φxCx=1A
15 8 9 14 mulassd φxCx=1xCA=xCA
16 14 mullidd φxCx=11A=A
17 13 15 16 3eqtr3d φxCx=1xCA=A
18 12 oveq1d φxCx=1xCB=1B
19 2 adantr φxCx=1B
20 8 9 19 mulassd φxCx=1xCB=xCB
21 19 mullidd φxCx=11B=B
22 18 20 21 3eqtr3d φxCx=1xCB=B
23 17 22 eqeq12d φxCx=1xCA=xCBA=B
24 7 23 imbitrid φxCx=1CA=CBA=B
25 6 24 rexlimddv φCA=CBA=B
26 oveq2 A=BCA=CB
27 25 26 impbid1 φCA=CBA=B