Metamath Proof Explorer


Theorem recex

Description: Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007)

Ref Expression
Assertion recex A A 0 x A x = 1

Proof

Step Hyp Ref Expression
1 cnre A a b A = a + i b
2 recextlem2 a b a + i b 0 a a + b b 0
3 2 3expia a b a + i b 0 a a + b b 0
4 remulcl a a a a
5 4 anidms a a a
6 remulcl b b b b
7 6 anidms b b b
8 readdcl a a b b a a + b b
9 5 7 8 syl2an a b a a + b b
10 ax-rrecex a a + b b a a + b b 0 y a a + b b y = 1
11 9 10 sylan a b a a + b b 0 y a a + b b y = 1
12 recn a a
13 recn b b
14 recn y y
15 ax-icn i
16 mulcl i b i b
17 15 16 mpan b i b
18 subcl a i b a i b
19 17 18 sylan2 a b a i b
20 mulcl a i b y a i b y
21 19 20 sylan a b y a i b y
22 addcl a i b a + i b
23 17 22 sylan2 a b a + i b
24 23 adantr a b y a + i b
25 19 adantr a b y a i b
26 simpr a b y y
27 24 25 26 mulassd a b y a + i b a i b y = a + i b a i b y
28 recextlem1 a b a + i b a i b = a a + b b
29 28 adantr a b y a + i b a i b = a a + b b
30 29 oveq1d a b y a + i b a i b y = a a + b b y
31 27 30 eqtr3d a b y a + i b a i b y = a a + b b y
32 id a a + b b y = 1 a a + b b y = 1
33 31 32 sylan9eq a b y a a + b b y = 1 a + i b a i b y = 1
34 oveq2 x = a i b y a + i b x = a + i b a i b y
35 34 eqeq1d x = a i b y a + i b x = 1 a + i b a i b y = 1
36 35 rspcev a i b y a + i b a i b y = 1 x a + i b x = 1
37 21 33 36 syl2an2r a b y a a + b b y = 1 x a + i b x = 1
38 37 exp31 a b y a a + b b y = 1 x a + i b x = 1
39 14 38 syl5 a b y a a + b b y = 1 x a + i b x = 1
40 39 rexlimdv a b y a a + b b y = 1 x a + i b x = 1
41 12 13 40 syl2an a b y a a + b b y = 1 x a + i b x = 1
42 41 adantr a b a a + b b 0 y a a + b b y = 1 x a + i b x = 1
43 11 42 mpd a b a a + b b 0 x a + i b x = 1
44 43 ex a b a a + b b 0 x a + i b x = 1
45 3 44 syld a b a + i b 0 x a + i b x = 1
46 45 adantr a b A = a + i b a + i b 0 x a + i b x = 1
47 neeq1 A = a + i b A 0 a + i b 0
48 47 adantl a b A = a + i b A 0 a + i b 0
49 oveq1 A = a + i b A x = a + i b x
50 49 eqeq1d A = a + i b A x = 1 a + i b x = 1
51 50 rexbidv A = a + i b x A x = 1 x a + i b x = 1
52 51 adantl a b A = a + i b x A x = 1 x a + i b x = 1
53 46 48 52 3imtr4d a b A = a + i b A 0 x A x = 1
54 53 ex a b A = a + i b A 0 x A x = 1
55 54 rexlimivv a b A = a + i b A 0 x A x = 1
56 1 55 syl A A 0 x A x = 1
57 56 imp A A 0 x A x = 1