Description: Lemma for recex . (Contributed by Eric Schmidt, 23-May-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | recextlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | ax-icn | |
|
3 | 2 | mul01i | |
4 | 1 3 | eqtrdi | |
5 | oveq12 | |
|
6 | 4 5 | sylan2 | |
7 | 00id | |
|
8 | 6 7 | eqtrdi | |
9 | 8 | necon3ai | |
10 | neorian | |
|
11 | 9 10 | sylibr | |
12 | remulcl | |
|
13 | 12 | anidms | |
14 | remulcl | |
|
15 | 14 | anidms | |
16 | 13 15 | anim12i | |
17 | msqgt0 | |
|
18 | msqge0 | |
|
19 | 17 18 | anim12i | |
20 | 19 | an32s | |
21 | addgtge0 | |
|
22 | 16 20 21 | syl2an2r | |
23 | msqge0 | |
|
24 | msqgt0 | |
|
25 | 23 24 | anim12i | |
26 | 25 | anassrs | |
27 | addgegt0 | |
|
28 | 16 26 27 | syl2an2r | |
29 | 22 28 | jaodan | |
30 | 11 29 | sylan2 | |
31 | 30 | 3impa | |
32 | 31 | gt0ne0d | |