Metamath Proof Explorer


Theorem recextlem2

Description: Lemma for recex . (Contributed by Eric Schmidt, 23-May-2007)

Ref Expression
Assertion recextlem2 ABA+iB0AA+BB0

Proof

Step Hyp Ref Expression
1 oveq2 B=0iB=i0
2 ax-icn i
3 2 mul01i i0=0
4 1 3 eqtrdi B=0iB=0
5 oveq12 A=0iB=0A+iB=0+0
6 4 5 sylan2 A=0B=0A+iB=0+0
7 00id 0+0=0
8 6 7 eqtrdi A=0B=0A+iB=0
9 8 necon3ai A+iB0¬A=0B=0
10 neorian A0B0¬A=0B=0
11 9 10 sylibr A+iB0A0B0
12 remulcl AAAA
13 12 anidms AAA
14 remulcl BBBB
15 14 anidms BBB
16 13 15 anim12i ABAABB
17 msqgt0 AA00<AA
18 msqge0 B0BB
19 17 18 anim12i AA0B0<AA0BB
20 19 an32s ABA00<AA0BB
21 addgtge0 AABB0<AA0BB0<AA+BB
22 16 20 21 syl2an2r ABA00<AA+BB
23 msqge0 A0AA
24 msqgt0 BB00<BB
25 23 24 anim12i ABB00AA0<BB
26 25 anassrs ABB00AA0<BB
27 addgegt0 AABB0AA0<BB0<AA+BB
28 16 26 27 syl2an2r ABB00<AA+BB
29 22 28 jaodan ABA0B00<AA+BB
30 11 29 sylan2 ABA+iB00<AA+BB
31 30 3impa ABA+iB00<AA+BB
32 31 gt0ne0d ABA+iB0AA+BB0